3.0 KiB
fluidsGLES - Fluids (OpenGLES Version)
Description
An example of fluid simulation using CUDA and CUFFT, with OpenGLES rendering.
Key Concepts
Graphics Interop, CUFFT Library, Physically-Based Simulation
Supported SM Architectures
SM 5.0 SM 5.2 SM 5.3 SM 6.0 SM 6.1 SM 7.0 SM 7.2 SM 7.5 SM 8.0 SM 8.6 SM 8.7 SM 8.9 SM 9.0
Supported OSes
Linux
Supported CPU Architecture
armv7l
CUDA APIs involved
CUDA Runtime API
cudaGraphicsUnmapResources, cudaMemcpy, cudaMallocArray, cudaFreeArray, cudaFree, cudaMallocPitch, cudaGraphicsResourceGetMappedPointer, cudaGraphicsMapResources, cudaDestroyTextureObject, cudaCreateTextureObject, cudaGraphicsUnregisterResource, cudaMalloc, cudaGraphicsGLRegisterBuffer, cudaGetDeviceProperties
Dependencies needed to build/run
Prerequisites
Download and install the CUDA Toolkit 12.4 for your corresponding platform. Make sure the dependencies mentioned in Dependencies section above are installed.
Build and Run
Linux
The Linux samples are built using makefiles. To use the makefiles, change the current directory to the sample directory you wish to build, and run make:
$ cd <sample_dir>
$ make
The samples makefiles can take advantage of certain options:
-
TARGET_ARCH= - cross-compile targeting a specific architecture. Allowed architectures are armv7l. By default, TARGET_ARCH is set to HOST_ARCH. On a x86_64 machine, not setting TARGET_ARCH is the equivalent of setting TARGET_ARCH=x86_64.
$ make TARGET_ARCH=armv7l
See here for more details. -
dbg=1 - build with debug symbols
$ make dbg=1
-
SMS="A B ..." - override the SM architectures for which the sample will be built, where
"A B ..."
is a space-delimited list of SM architectures. For example, to generate SASS for SM 50 and SM 60, useSMS="50 60"
.$ make SMS="50 60"
-
HOST_COMPILER=<host_compiler> - override the default g++ host compiler. See the Linux Installation Guide for a list of supported host compilers.
$ make HOST_COMPILER=g++