mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-24 16:19:15 +08:00
541 lines
16 KiB
C++
541 lines
16 KiB
C++
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
//
|
|
// Template math library for common 3D functionality
|
|
//
|
|
// nvMatrix.h - template matrix code
|
|
//
|
|
// This code is in part deriver from glh, a cross platform glut helper library.
|
|
// The copyright for glh follows this notice.
|
|
//
|
|
// Copyright (c) NVIDIA Corporation. All rights reserved.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/*
|
|
Copyright (c) 2000 Cass Everitt
|
|
Copyright (c) 2000 NVIDIA Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or
|
|
without modification, are permitted provided that the following
|
|
conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the following
|
|
disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the following
|
|
disclaimer in the documentation and/or other materials
|
|
provided with the distribution.
|
|
|
|
* The names of contributors to this software may not be used
|
|
to endorse or promote products derived from this software
|
|
without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
Cass Everitt - cass@r3.nu
|
|
*/
|
|
|
|
#ifndef NV_MATRIX_H
|
|
#define NV_MATRIX_H
|
|
|
|
namespace nv
|
|
{
|
|
|
|
template <class T> class vec2;
|
|
template <class T> class vec3;
|
|
template <class T> class vec4;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Matrix
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template<class T>
|
|
class matrix4
|
|
{
|
|
|
|
public:
|
|
|
|
matrix4()
|
|
{
|
|
make_identity();
|
|
}
|
|
|
|
matrix4(T t)
|
|
{
|
|
set_value(t);
|
|
}
|
|
|
|
matrix4(const T *m)
|
|
{
|
|
set_value(m);
|
|
}
|
|
|
|
matrix4(T a00, T a01, T a02, T a03,
|
|
T a10, T a11, T a12, T a13,
|
|
T a20, T a21, T a22, T a23,
|
|
T a30, T a31, T a32, T a33) :
|
|
_11(a00), _12(a01), _13(a02), _14(a03),
|
|
_21(a10), _22(a11), _23(a12), _24(a13),
|
|
_31(a20), _32(a21), _33(a22), _34(a23),
|
|
_41(a30), _42(a31), _43(a32), _44(a33)
|
|
{}
|
|
|
|
|
|
void get_value(T *mp) const
|
|
{
|
|
int c = 0;
|
|
|
|
for (int j=0; j < 4; j++)
|
|
for (int i=0; i < 4; i++)
|
|
{
|
|
mp[c++] = element(i,j);
|
|
}
|
|
}
|
|
|
|
const T *get_value() const
|
|
{
|
|
return _array;
|
|
}
|
|
|
|
void set_value(T *mp)
|
|
{
|
|
int c = 0;
|
|
|
|
for (int j=0; j < 4; j++)
|
|
for (int i=0; i < 4; i++)
|
|
{
|
|
element(i,j) = mp[c++];
|
|
}
|
|
}
|
|
|
|
void set_value(T r)
|
|
{
|
|
for (int i=0; i < 4; i++)
|
|
for (int j=0; j < 4; j++)
|
|
{
|
|
element(i,j) = r;
|
|
}
|
|
}
|
|
|
|
void make_identity()
|
|
{
|
|
element(0,0) = 1.0;
|
|
element(0,1) = 0.0;
|
|
element(0,2) = 0.0;
|
|
element(0,3) = 0.0;
|
|
|
|
element(1,0) = 0.0;
|
|
element(1,1) = 1.0;
|
|
element(1,2) = 0.0;
|
|
element(1,3) = 0.0;
|
|
|
|
element(2,0) = 0.0;
|
|
element(2,1) = 0.0;
|
|
element(2,2) = 1.0;
|
|
element(2,3) = 0.0;
|
|
|
|
element(3,0) = 0.0;
|
|
element(3,1) = 0.0;
|
|
element(3,2) = 0.0;
|
|
element(3,3) = 1.0;
|
|
}
|
|
|
|
// set a uniform scale
|
|
void set_scale(T s)
|
|
{
|
|
element(0,0) = s;
|
|
element(1,1) = s;
|
|
element(2,2) = s;
|
|
}
|
|
|
|
void set_scale(const vec3<T> &s)
|
|
{
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
element(i,i) = s[i];
|
|
}
|
|
}
|
|
|
|
|
|
void set_translate(const vec3<T> &t)
|
|
{
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
element(i,3) = t[i];
|
|
}
|
|
}
|
|
|
|
void set_row(int r, const vec4<T> &t)
|
|
{
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
element(r,i) = t[i];
|
|
}
|
|
}
|
|
|
|
void set_column(int c, const vec4<T> &t)
|
|
{
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
element(i,c) = t[i];
|
|
}
|
|
}
|
|
|
|
vec4<T> get_row(int r) const
|
|
{
|
|
vec4<T> v;
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
v[i] = element(r,i);
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
vec4<T> get_column(int c) const
|
|
{
|
|
vec4<T> v;
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
v[i] = element(i,c);
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
friend matrix4 inverse(const matrix4 &m)
|
|
{
|
|
matrix4 minv;
|
|
|
|
T r1[8], r2[8], r3[8], r4[8];
|
|
T *s[4], *tmprow;
|
|
|
|
s[0] = &r1[0];
|
|
s[1] = &r2[0];
|
|
s[2] = &r3[0];
|
|
s[3] = &r4[0];
|
|
|
|
register int i,j,p,jj;
|
|
|
|
for (i=0; i<4; i++)
|
|
{
|
|
for (j=0; j<4; j++)
|
|
{
|
|
s[i][j] = m.element(i,j);
|
|
|
|
if (i==j)
|
|
{
|
|
s[i][j+4] = 1.0;
|
|
}
|
|
else
|
|
{
|
|
s[i][j+4] = 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
T scp[4];
|
|
|
|
for (i=0; i<4; i++)
|
|
{
|
|
scp[i] = T(fabs(s[i][0]));
|
|
|
|
for (j=1; j<4; j++)
|
|
if (T(fabs(s[i][j])) > scp[i])
|
|
{
|
|
scp[i] = T(fabs(s[i][j]));
|
|
}
|
|
|
|
if (scp[i] == 0.0)
|
|
{
|
|
return minv; // singular matrix!
|
|
}
|
|
}
|
|
|
|
int pivot_to;
|
|
T scp_max;
|
|
|
|
for (i=0; i<4; i++)
|
|
{
|
|
// select pivot row
|
|
pivot_to = i;
|
|
scp_max = T(fabs(s[i][i]/scp[i]));
|
|
|
|
// find out which row should be on top
|
|
for (p=i+1; p<4; p++)
|
|
if (T(fabs(s[p][i]/scp[p])) > scp_max)
|
|
{
|
|
scp_max = T(fabs(s[p][i]/scp[p]));
|
|
pivot_to = p;
|
|
}
|
|
|
|
// Pivot if necessary
|
|
if (pivot_to != i)
|
|
{
|
|
tmprow = s[i];
|
|
s[i] = s[pivot_to];
|
|
s[pivot_to] = tmprow;
|
|
T tmpscp;
|
|
tmpscp = scp[i];
|
|
scp[i] = scp[pivot_to];
|
|
scp[pivot_to] = tmpscp;
|
|
}
|
|
|
|
T mji;
|
|
|
|
// perform gaussian elimination
|
|
for (j=i+1; j<4; j++)
|
|
{
|
|
mji = s[j][i]/s[i][i];
|
|
s[j][i] = 0.0;
|
|
|
|
for (jj=i+1; jj<8; jj++)
|
|
{
|
|
s[j][jj] -= mji*s[i][jj];
|
|
}
|
|
}
|
|
}
|
|
|
|
if (s[3][3] == 0.0)
|
|
{
|
|
return minv; // singular matrix!
|
|
}
|
|
|
|
//
|
|
// Now we have an upper triangular matrix.
|
|
//
|
|
// x x x x | y y y y
|
|
// 0 x x x | y y y y
|
|
// 0 0 x x | y y y y
|
|
// 0 0 0 x | y y y y
|
|
//
|
|
// we'll back substitute to get the inverse
|
|
//
|
|
// 1 0 0 0 | z z z z
|
|
// 0 1 0 0 | z z z z
|
|
// 0 0 1 0 | z z z z
|
|
// 0 0 0 1 | z z z z
|
|
//
|
|
|
|
T mij;
|
|
|
|
for (i=3; i>0; i--)
|
|
{
|
|
for (j=i-1; j > -1; j--)
|
|
{
|
|
mij = s[j][i]/s[i][i];
|
|
|
|
for (jj=j+1; jj<8; jj++)
|
|
{
|
|
s[j][jj] -= mij*s[i][jj];
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i=0; i<4; i++)
|
|
for (j=0; j<4; j++)
|
|
{
|
|
minv(i,j) = s[i][j+4] / s[i][i];
|
|
}
|
|
|
|
return minv;
|
|
}
|
|
|
|
|
|
friend matrix4 transpose(const matrix4 &m)
|
|
{
|
|
matrix4 mtrans;
|
|
|
|
for (int i=0; i<4; i++)
|
|
for (int j=0; j<4; j++)
|
|
{
|
|
mtrans(i,j) = m.element(j,i);
|
|
}
|
|
|
|
return mtrans;
|
|
}
|
|
|
|
matrix4 &operator *= (const matrix4 &rhs)
|
|
{
|
|
matrix4 mt(*this);
|
|
set_value(T(0));
|
|
|
|
for (int i=0; i < 4; i++)
|
|
for (int j=0; j < 4; j++)
|
|
for (int c=0; c < 4; c++)
|
|
{
|
|
element(i,j) += mt(i,c) * rhs(c,j);
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
friend matrix4 operator * (const matrix4 &lhs, const matrix4 &rhs)
|
|
{
|
|
matrix4 r(T(0));
|
|
|
|
for (int i=0; i < 4; i++)
|
|
for (int j=0; j < 4; j++)
|
|
for (int c=0; c < 4; c++)
|
|
{
|
|
r.element(i,j) += lhs(i,c) * rhs(c,j);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
// dst = M * src
|
|
vec4<T> operator *(const vec4<T> &src) const
|
|
{
|
|
vec4<T> r;
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
r[i] = (src[0] * element(i,0) + src[1] * element(i,1) +
|
|
src[2] * element(i,2) + src[3] * element(i,3));
|
|
|
|
return r;
|
|
}
|
|
|
|
// dst = src * M
|
|
friend vec4<T> operator *(const vec4<T> &lhs, const matrix4 &rhs)
|
|
{
|
|
vec4<T> r;
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
r[i] = (lhs[0] * rhs.element(0,i) + lhs[1] * rhs.element(1,i) +
|
|
lhs[2] * rhs.element(2,i) + lhs[3] * rhs.element(3,i));
|
|
|
|
return r;
|
|
}
|
|
|
|
T &operator()(int row, int col)
|
|
{
|
|
return element(row,col);
|
|
}
|
|
|
|
const T &operator()(int row, int col) const
|
|
{
|
|
return element(row,col);
|
|
}
|
|
|
|
T &element(int row, int col)
|
|
{
|
|
return _array[row | (col<<2)];
|
|
}
|
|
|
|
const T &element(int row, int col) const
|
|
{
|
|
return _array[row | (col<<2)];
|
|
}
|
|
|
|
matrix4 &operator *= (const T &r)
|
|
{
|
|
for (int i = 0; i < 4; ++i)
|
|
{
|
|
element(0,i) *= r;
|
|
element(1,i) *= r;
|
|
element(2,i) *= r;
|
|
element(3,i) *= r;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
matrix4 &operator += (const matrix4 &mat)
|
|
{
|
|
for (int i = 0; i < 4; ++i)
|
|
{
|
|
element(0,i) += mat.element(0,i);
|
|
element(1,i) += mat.element(1,i);
|
|
element(2,i) += mat.element(2,i);
|
|
element(3,i) += mat.element(3,i);
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
friend bool operator == (const matrix4 &lhs, const matrix4 &rhs)
|
|
{
|
|
bool r = true;
|
|
|
|
for (int i = 0; i < 16; i++)
|
|
{
|
|
r &= lhs._array[i] == rhs._array[i];
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
friend bool operator != (const matrix4 &lhs, const matrix4 &rhs)
|
|
{
|
|
bool r = true;
|
|
|
|
for (int i = 0; i < 16; i++)
|
|
{
|
|
r &= lhs._array[i] != rhs._array[i];
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
union
|
|
{
|
|
struct
|
|
{
|
|
T _11, _12, _13, _14; // standard names for components
|
|
T _21, _22, _23, _24; // standard names for components
|
|
T _31, _32, _33, _34; // standard names for components
|
|
T _41, _42, _43, _44; // standard names for components
|
|
};
|
|
T _array[16]; // array access
|
|
};
|
|
};
|
|
|
|
};
|
|
|
|
#endif
|