/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // // Template math library for common 3D functionality // // nvMatrix.h - template matrix code // // This code is in part deriver from glh, a cross platform glut helper library. // The copyright for glh follows this notice. // // Copyright (c) NVIDIA Corporation. All rights reserved. //////////////////////////////////////////////////////////////////////////////// /* Copyright (c) 2000 Cass Everitt Copyright (c) 2000 NVIDIA Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * The names of contributors to this software may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Cass Everitt - cass@r3.nu */ #ifndef NV_MATRIX_H #define NV_MATRIX_H namespace nv { template class vec2; template class vec3; template class vec4; //////////////////////////////////////////////////////////////////////////////// // // Matrix // //////////////////////////////////////////////////////////////////////////////// template class matrix4 { public: matrix4() { make_identity(); } matrix4(T t) { set_value(t); } matrix4(const T *m) { set_value(m); } matrix4(T a00, T a01, T a02, T a03, T a10, T a11, T a12, T a13, T a20, T a21, T a22, T a23, T a30, T a31, T a32, T a33) : _11(a00), _12(a01), _13(a02), _14(a03), _21(a10), _22(a11), _23(a12), _24(a13), _31(a20), _32(a21), _33(a22), _34(a23), _41(a30), _42(a31), _43(a32), _44(a33) {} void get_value(T *mp) const { int c = 0; for (int j=0; j < 4; j++) for (int i=0; i < 4; i++) { mp[c++] = element(i,j); } } const T *get_value() const { return _array; } void set_value(T *mp) { int c = 0; for (int j=0; j < 4; j++) for (int i=0; i < 4; i++) { element(i,j) = mp[c++]; } } void set_value(T r) { for (int i=0; i < 4; i++) for (int j=0; j < 4; j++) { element(i,j) = r; } } void make_identity() { element(0,0) = 1.0; element(0,1) = 0.0; element(0,2) = 0.0; element(0,3) = 0.0; element(1,0) = 0.0; element(1,1) = 1.0; element(1,2) = 0.0; element(1,3) = 0.0; element(2,0) = 0.0; element(2,1) = 0.0; element(2,2) = 1.0; element(2,3) = 0.0; element(3,0) = 0.0; element(3,1) = 0.0; element(3,2) = 0.0; element(3,3) = 1.0; } // set a uniform scale void set_scale(T s) { element(0,0) = s; element(1,1) = s; element(2,2) = s; } void set_scale(const vec3 &s) { for (int i = 0; i < 3; i++) { element(i,i) = s[i]; } } void set_translate(const vec3 &t) { for (int i = 0; i < 3; i++) { element(i,3) = t[i]; } } void set_row(int r, const vec4 &t) { for (int i = 0; i < 4; i++) { element(r,i) = t[i]; } } void set_column(int c, const vec4 &t) { for (int i = 0; i < 4; i++) { element(i,c) = t[i]; } } vec4 get_row(int r) const { vec4 v; for (int i = 0; i < 4; i++) { v[i] = element(r,i); } return v; } vec4 get_column(int c) const { vec4 v; for (int i = 0; i < 4; i++) { v[i] = element(i,c); } return v; } friend matrix4 inverse(const matrix4 &m) { matrix4 minv; T r1[8], r2[8], r3[8], r4[8]; T *s[4], *tmprow; s[0] = &r1[0]; s[1] = &r2[0]; s[2] = &r3[0]; s[3] = &r4[0]; register int i,j,p,jj; for (i=0; i<4; i++) { for (j=0; j<4; j++) { s[i][j] = m.element(i,j); if (i==j) { s[i][j+4] = 1.0; } else { s[i][j+4] = 0.0; } } } T scp[4]; for (i=0; i<4; i++) { scp[i] = T(fabs(s[i][0])); for (j=1; j<4; j++) if (T(fabs(s[i][j])) > scp[i]) { scp[i] = T(fabs(s[i][j])); } if (scp[i] == 0.0) { return minv; // singular matrix! } } int pivot_to; T scp_max; for (i=0; i<4; i++) { // select pivot row pivot_to = i; scp_max = T(fabs(s[i][i]/scp[i])); // find out which row should be on top for (p=i+1; p<4; p++) if (T(fabs(s[p][i]/scp[p])) > scp_max) { scp_max = T(fabs(s[p][i]/scp[p])); pivot_to = p; } // Pivot if necessary if (pivot_to != i) { tmprow = s[i]; s[i] = s[pivot_to]; s[pivot_to] = tmprow; T tmpscp; tmpscp = scp[i]; scp[i] = scp[pivot_to]; scp[pivot_to] = tmpscp; } T mji; // perform gaussian elimination for (j=i+1; j<4; j++) { mji = s[j][i]/s[i][i]; s[j][i] = 0.0; for (jj=i+1; jj<8; jj++) { s[j][jj] -= mji*s[i][jj]; } } } if (s[3][3] == 0.0) { return minv; // singular matrix! } // // Now we have an upper triangular matrix. // // x x x x | y y y y // 0 x x x | y y y y // 0 0 x x | y y y y // 0 0 0 x | y y y y // // we'll back substitute to get the inverse // // 1 0 0 0 | z z z z // 0 1 0 0 | z z z z // 0 0 1 0 | z z z z // 0 0 0 1 | z z z z // T mij; for (i=3; i>0; i--) { for (j=i-1; j > -1; j--) { mij = s[j][i]/s[i][i]; for (jj=j+1; jj<8; jj++) { s[j][jj] -= mij*s[i][jj]; } } } for (i=0; i<4; i++) for (j=0; j<4; j++) { minv(i,j) = s[i][j+4] / s[i][i]; } return minv; } friend matrix4 transpose(const matrix4 &m) { matrix4 mtrans; for (int i=0; i<4; i++) for (int j=0; j<4; j++) { mtrans(i,j) = m.element(j,i); } return mtrans; } matrix4 &operator *= (const matrix4 &rhs) { matrix4 mt(*this); set_value(T(0)); for (int i=0; i < 4; i++) for (int j=0; j < 4; j++) for (int c=0; c < 4; c++) { element(i,j) += mt(i,c) * rhs(c,j); } return *this; } friend matrix4 operator * (const matrix4 &lhs, const matrix4 &rhs) { matrix4 r(T(0)); for (int i=0; i < 4; i++) for (int j=0; j < 4; j++) for (int c=0; c < 4; c++) { r.element(i,j) += lhs(i,c) * rhs(c,j); } return r; } // dst = M * src vec4 operator *(const vec4 &src) const { vec4 r; for (int i = 0; i < 4; i++) r[i] = (src[0] * element(i,0) + src[1] * element(i,1) + src[2] * element(i,2) + src[3] * element(i,3)); return r; } // dst = src * M friend vec4 operator *(const vec4 &lhs, const matrix4 &rhs) { vec4 r; for (int i = 0; i < 4; i++) r[i] = (lhs[0] * rhs.element(0,i) + lhs[1] * rhs.element(1,i) + lhs[2] * rhs.element(2,i) + lhs[3] * rhs.element(3,i)); return r; } T &operator()(int row, int col) { return element(row,col); } const T &operator()(int row, int col) const { return element(row,col); } T &element(int row, int col) { return _array[row | (col<<2)]; } const T &element(int row, int col) const { return _array[row | (col<<2)]; } matrix4 &operator *= (const T &r) { for (int i = 0; i < 4; ++i) { element(0,i) *= r; element(1,i) *= r; element(2,i) *= r; element(3,i) *= r; } return *this; } matrix4 &operator += (const matrix4 &mat) { for (int i = 0; i < 4; ++i) { element(0,i) += mat.element(0,i); element(1,i) += mat.element(1,i); element(2,i) += mat.element(2,i); element(3,i) += mat.element(3,i); } return *this; } friend bool operator == (const matrix4 &lhs, const matrix4 &rhs) { bool r = true; for (int i = 0; i < 16; i++) { r &= lhs._array[i] == rhs._array[i]; } return r; } friend bool operator != (const matrix4 &lhs, const matrix4 &rhs) { bool r = true; for (int i = 0; i < 16; i++) { r &= lhs._array[i] != rhs._array[i]; } return r; } union { struct { T _11, _12, _13, _14; // standard names for components T _21, _22, _23, _24; // standard names for components T _31, _32, _33, _34; // standard names for components T _41, _42, _43, _44; // standard names for components }; T _array[16]; // array access }; }; }; #endif