cuda-samples/Samples/4_CUDA_Libraries/cudaNvSci/README.md
2022-01-13 11:35:24 +05:30

68 lines
3.5 KiB
Markdown

# cudaNvSci - CUDA NvSciBuf/NvSciSync Interop
## Description
This sample demonstrates CUDA-NvSciBuf/NvSciSync Interop. Two CPU threads import the NvSciBuf and NvSciSync into CUDA to perform two image processing algorithms on a ppm image - image rotation in 1st thread & rgba to grayscale conversion of rotated image in 2nd thread. Currently only supported on Ubuntu 18.04
## Key Concepts
CUDA NvSci Interop, Data Parallel Algorithms, Image Processing
## Supported SM Architectures
[SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus) [SM 8.6 ](https://developer.nvidia.com/cuda-gpus) [SM 8.7 ](https://developer.nvidia.com/cuda-gpus)
## Supported OSes
Linux
## Supported CPU Architecture
x86_64, aarch64
## CUDA APIs involved
### [CUDA Driver API](http://docs.nvidia.com/cuda/cuda-driver-api/index.html)
cuDeviceGetUuid
### [CUDA Runtime API](http://docs.nvidia.com/cuda/cuda-runtime-api/index.html)
cudaGetMipmappedArrayLevel, cudaImportNvSciImage, cudaImportExternalSemaphore, cudaNvSciApp, cudaStreamCreateWithFlags, cudaExternalMemoryGetMappedMipmappedArray, cudaNvSciWait, cudaDestroyExternalMemory, cudaMemcpyAsync, cudaStreamDestroy, cudaSignalExternalSemaphoresAsync, cudaDeviceGetNvSciSyncAttributes, cudaFreeMipmappedArray, cudaMallocHost, cudaNvSci, cudaImportExternalMemory, cudaSetDevice, cudaImportNvSciRawBuf, cudaImportNvSciSemaphore, cudaGetDeviceCount, cudaDestroyTextureObject, cudaDeviceGetAttribute, cudaDestroyExternalSemaphore, cudaStreamSynchronize, cudaNvSciSignal, cudaFree, cudaDeviceId, cudaExternalMemoryGetMappedBuffer, cudaCreateTextureObject, cudaFreeHost, cudaWaitExternalSemaphoresAsync
## Dependencies needed to build/run
[NVSCI](../../README.md#nvsci)
## Prerequisites
Download and install the [CUDA Toolkit 11.6](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
Make sure the dependencies mentioned in [Dependencies]() section above are installed.
## Build and Run
### Linux
The Linux samples are built using makefiles. To use the makefiles, change the current directory to the sample directory you wish to build, and run make:
```
$ cd <sample_dir>
$ make
```
The samples makefiles can take advantage of certain options:
* **TARGET_ARCH=<arch>** - cross-compile targeting a specific architecture. Allowed architectures are x86_64, aarch64.
By default, TARGET_ARCH is set to HOST_ARCH. On a x86_64 machine, not setting TARGET_ARCH is the equivalent of setting TARGET_ARCH=x86_64.<br/>
`$ make TARGET_ARCH=x86_64` <br/> `$ make TARGET_ARCH=aarch64` <br/>
See [here](http://docs.nvidia.com/cuda/cuda-samples/index.html#cross-samples) for more details.
* **dbg=1** - build with debug symbols
```
$ make dbg=1
```
* **SMS="A B ..."** - override the SM architectures for which the sample will be built, where `"A B ..."` is a space-delimited list of SM architectures. For example, to generate SASS for SM 50 and SM 60, use `SMS="50 60"`.
```
$ make SMS="50 60"
```
* **HOST_COMPILER=<host_compiler>** - override the default g++ host compiler. See the [Linux Installation Guide](http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#system-requirements) for a list of supported host compilers.
```
$ make HOST_COMPILER=g++
```
## References (for more details)