cuda-samples/Samples/matrixMulDrv/matrixMul_kernel.cu

140 lines
5.2 KiB
Plaintext
Raw Normal View History

/* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2018-03-03 08:07:37 +08:00
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Matrix multiplication: C = A * B.
* Device code.
*/
#ifndef _MATRIXMUL_KERNEL_H_
#define _MATRIXMUL_KERNEL_H_
#include <stdio.h>
#define CHECK_BANK_CONFLICTS 0
#if CHECK_BANK_CONFLICTS
#define AS(i, j) \
cutilBankChecker((reinterpret_cast<float *>(&As[0][0])), (block_size * i + j))
#define BS(i, j) \
cutilBankChecker((reinterpret_cast<float *>(&Bs[0][0])), (block_size * i + j))
#else
#define AS(i, j) As[i][j]
#define BS(i, j) Bs[i][j]
#endif
////////////////////////////////////////////////////////////////////////////////
//! Matrix multiplication on the device: C = A * B
//! wA is A's width and wB is B's width
////////////////////////////////////////////////////////////////////////////////
template <int block_size, typename size_type>
__device__ void matrixMul(float *C, float *A, float *B, size_type wA,
size_type wB) {
// Block index
size_type bx = blockIdx.x;
size_type by = blockIdx.y;
// Thread index
size_type tx = threadIdx.x;
size_type ty = threadIdx.y;
// Index of the first sub-matrix of A processed by the block
size_type aBegin = wA * block_size * by;
// Index of the last sub-matrix of A processed by the block
size_type aEnd = aBegin + wA - 1;
// Step size used to iterate through the sub-matrices of A
size_type aStep = block_size;
// Index of the first sub-matrix of B processed by the block
size_type bBegin = block_size * bx;
// Step size used to iterate through the sub-matrices of B
size_type bStep = block_size * wB;
// Csub is used to store the element of the block sub-matrix
// that is computed by the thread
float Csub = 0;
// Loop over all the sub-matrices of A and B
// required to compute the block sub-matrix
for (size_type a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) {
// Declaration of the shared memory array As used to
// store the sub-matrix of A
__shared__ float As[block_size][block_size];
// Declaration of the shared memory array Bs used to
// store the sub-matrix of B
__shared__ float Bs[block_size][block_size];
// Load the matrices from device memory
// to shared memory; each thread loads
// one element of each matrix
AS(ty, tx) = A[a + wA * ty + tx];
BS(ty, tx) = B[b + wB * ty + tx];
// Synchronize to make sure the matrices are loaded
__syncthreads();
// Multiply the two matrices together;
// each thread computes one element
// of the block sub-matrix
#pragma unroll
for (size_type k = 0; k < block_size; ++k) Csub += AS(ty, k) * BS(k, tx);
// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of A and B in the next iteration
__syncthreads();
}
// Write the block sub-matrix to device memory;
// each thread writes one element
size_type c = wB * block_size * by + block_size * bx;
C[c + wB * ty + tx] = Csub;
}
// C wrappers around our template kernel
extern "C" __global__ void matrixMul_bs16_32bit(float *C, float *A, float *B,
int wA, int wB) {
matrixMul<16, int>(C, A, B, wA, wB);
}
extern "C" __global__ void matrixMul_bs16_64bit(float *C, float *A, float *B,
size_t wA, size_t wB) {
matrixMul<16, size_t>(C, A, B, wA, wB);
}
extern "C" __global__ void matrixMul_bs32_32bit(float *C, float *A, float *B,
int wA, int wB) {
matrixMul<32, int>(C, A, B, wA, wB);
}
extern "C" __global__ void matrixMul_bs32_64bit(float *C, float *A, float *B,
size_t wA, size_t wB) {
matrixMul<32, size_t>(C, A, B, wA, wB);
}
#endif // #ifndef _MATRIXMUL_KERNEL_H_