/* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* Matrix multiplication: C = A * B. * Device code. */ #ifndef _MATRIXMUL_KERNEL_H_ #define _MATRIXMUL_KERNEL_H_ #include #define CHECK_BANK_CONFLICTS 0 #if CHECK_BANK_CONFLICTS #define AS(i, j) \ cutilBankChecker((reinterpret_cast(&As[0][0])), (block_size * i + j)) #define BS(i, j) \ cutilBankChecker((reinterpret_cast(&Bs[0][0])), (block_size * i + j)) #else #define AS(i, j) As[i][j] #define BS(i, j) Bs[i][j] #endif //////////////////////////////////////////////////////////////////////////////// //! Matrix multiplication on the device: C = A * B //! wA is A's width and wB is B's width //////////////////////////////////////////////////////////////////////////////// template __device__ void matrixMul(float *C, float *A, float *B, size_type wA, size_type wB) { // Block index size_type bx = blockIdx.x; size_type by = blockIdx.y; // Thread index size_type tx = threadIdx.x; size_type ty = threadIdx.y; // Index of the first sub-matrix of A processed by the block size_type aBegin = wA * block_size * by; // Index of the last sub-matrix of A processed by the block size_type aEnd = aBegin + wA - 1; // Step size used to iterate through the sub-matrices of A size_type aStep = block_size; // Index of the first sub-matrix of B processed by the block size_type bBegin = block_size * bx; // Step size used to iterate through the sub-matrices of B size_type bStep = block_size * wB; // Csub is used to store the element of the block sub-matrix // that is computed by the thread float Csub = 0; // Loop over all the sub-matrices of A and B // required to compute the block sub-matrix for (size_type a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) { // Declaration of the shared memory array As used to // store the sub-matrix of A __shared__ float As[block_size][block_size]; // Declaration of the shared memory array Bs used to // store the sub-matrix of B __shared__ float Bs[block_size][block_size]; // Load the matrices from device memory // to shared memory; each thread loads // one element of each matrix AS(ty, tx) = A[a + wA * ty + tx]; BS(ty, tx) = B[b + wB * ty + tx]; // Synchronize to make sure the matrices are loaded __syncthreads(); // Multiply the two matrices together; // each thread computes one element // of the block sub-matrix #pragma unroll for (size_type k = 0; k < block_size; ++k) Csub += AS(ty, k) * BS(k, tx); // Synchronize to make sure that the preceding // computation is done before loading two new // sub-matrices of A and B in the next iteration __syncthreads(); } // Write the block sub-matrix to device memory; // each thread writes one element size_type c = wB * block_size * by + block_size * bx; C[c + wB * ty + tx] = Csub; } // C wrappers around our template kernel extern "C" __global__ void matrixMul_bs16_32bit(float *C, float *A, float *B, int wA, int wB) { matrixMul<16, int>(C, A, B, wA, wB); } extern "C" __global__ void matrixMul_bs16_64bit(float *C, float *A, float *B, size_t wA, size_t wB) { matrixMul<16, size_t>(C, A, B, wA, wB); } extern "C" __global__ void matrixMul_bs32_32bit(float *C, float *A, float *B, int wA, int wB) { matrixMul<32, int>(C, A, B, wA, wB); } extern "C" __global__ void matrixMul_bs32_64bit(float *C, float *A, float *B, size_t wA, size_t wB) { matrixMul<32, size_t>(C, A, B, wA, wB); } #endif // #ifndef _MATRIXMUL_KERNEL_H_