cuda-samples/Samples/binaryPartitionCG/binaryPartitionCG.cu

160 lines
6.4 KiB
Plaintext
Raw Normal View History

/* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This sample illustrates basic usage of binary partition cooperative groups
* within the thread block tile when divergent path exists.
* 1.) Each thread loads a value from random array.
* 2.) then checks if it is odd or even.
* 3.) create binary partition group based on the above predicate
* 4.) we count the number of odd/even in the group based on size of the binary
groups
* 5.) write it global counter of odd.
* 6.) sum the values loaded by individual threads(using reduce) and write it to
global even & odd elements sum.
*
* **NOTE** :
* binary_partition results in splitting warp into divergent thread groups
* this is not good from performance perspective, but in cases where warp
* divergence is inevitable one can use binary_partition group.
*/
#include <stdio.h>
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
#include <helper_cuda.h>
namespace cg = cooperative_groups;
void initOddEvenArr(int *inputArr, unsigned int size) {
for (int i = 0; i < size; i++) {
inputArr[i] = rand() % 50;
}
}
/**
* CUDA kernel device code
*
* Creates cooperative groups and performs odd/even counting & summation.
*/
__global__ void oddEvenCountAndSumCG(int *inputArr, int *numOfOdds,
int *sumOfOddAndEvens, unsigned int size) {
cg::thread_block cta = cg::this_thread_block();
cg::grid_group grid = cg::this_grid();
cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta);
for (int i = grid.thread_rank(); i < size; i += grid.size()) {
int elem = inputArr[i];
auto subTile = cg::binary_partition(tile32, elem & 1);
if (elem & 1) // Odd numbers group
{
int oddGroupSum = cg::reduce(subTile, elem, cg::plus<int>());
if (subTile.thread_rank() == 0) {
// Add number of odds present in this group of Odds.
atomicAdd(numOfOdds, subTile.size());
// Add local reduction of odds present in this group of Odds.
atomicAdd(&sumOfOddAndEvens[0], oddGroupSum);
}
} else // Even numbers group
{
int evenGroupSum = cg::reduce(subTile, elem, cg::plus<int>());
if (subTile.thread_rank() == 0) {
// Add local reduction of even present in this group of evens.
atomicAdd(&sumOfOddAndEvens[1], evenGroupSum);
}
}
// reconverge warp so for next loop iteration we ensure convergence of
// above diverged threads to perform coalesced loads of inputArr.
cg::sync(tile32);
}
}
/**
* Host main routine
*/
int main(int argc, const char **argv) {
int deviceId = findCudaDevice(argc, argv);
int *h_inputArr, *d_inputArr;
int *h_numOfOdds, *d_numOfOdds;
int *h_sumOfOddEvenElems, *d_sumOfOddEvenElems;
unsigned int arrSize = 1024 * 100;
checkCudaErrors(cudaMallocHost(&h_inputArr, sizeof(int) * arrSize));
checkCudaErrors(cudaMallocHost(&h_numOfOdds, sizeof(int)));
checkCudaErrors(cudaMallocHost(&h_sumOfOddEvenElems, sizeof(int) * 2));
initOddEvenArr(h_inputArr, arrSize);
cudaStream_t stream;
checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
checkCudaErrors(cudaMalloc(&d_inputArr, sizeof(int) * arrSize));
checkCudaErrors(cudaMalloc(&d_numOfOdds, sizeof(int)));
checkCudaErrors(cudaMalloc(&d_sumOfOddEvenElems, sizeof(int) * 2));
checkCudaErrors(cudaMemcpyAsync(d_inputArr, h_inputArr, sizeof(int) * arrSize,
cudaMemcpyHostToDevice, stream));
checkCudaErrors(cudaMemsetAsync(d_numOfOdds, 0, sizeof(int), stream));
checkCudaErrors(
cudaMemsetAsync(d_sumOfOddEvenElems, 0, 2 * sizeof(int), stream));
// Launch the kernel
int threadsPerBlock = 0;
int blocksPerGrid = 0;
checkCudaErrors(cudaOccupancyMaxPotentialBlockSize(
&blocksPerGrid, &threadsPerBlock, oddEvenCountAndSumCG, 0, 0));
printf("\nLaunching %d blocks with %d threads...\n\n", blocksPerGrid,
threadsPerBlock);
oddEvenCountAndSumCG<<<blocksPerGrid, threadsPerBlock, 0, stream>>>(
d_inputArr, d_numOfOdds, d_sumOfOddEvenElems, arrSize);
checkCudaErrors(cudaMemcpyAsync(h_numOfOdds, d_numOfOdds, sizeof(int),
cudaMemcpyDeviceToHost, stream));
checkCudaErrors(cudaMemcpyAsync(h_sumOfOddEvenElems, d_sumOfOddEvenElems,
2 * sizeof(int), cudaMemcpyDeviceToHost,
stream));
checkCudaErrors(cudaStreamSynchronize(stream));
printf("Array size = %d Num of Odds = %d Sum of Odds = %d Sum of Evens %d\n",
arrSize, h_numOfOdds[0], h_sumOfOddEvenElems[0],
h_sumOfOddEvenElems[1]);
printf("\n...Done.\n\n");
checkCudaErrors(cudaFreeHost(h_inputArr));
checkCudaErrors(cudaFreeHost(h_numOfOdds));
checkCudaErrors(cudaFreeHost(h_sumOfOddEvenElems));
checkCudaErrors(cudaFree(d_inputArr));
checkCudaErrors(cudaFree(d_numOfOdds));
checkCudaErrors(cudaFree(d_sumOfOddEvenElems));
return EXIT_SUCCESS;
}