/* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * This sample illustrates basic usage of binary partition cooperative groups * within the thread block tile when divergent path exists. * 1.) Each thread loads a value from random array. * 2.) then checks if it is odd or even. * 3.) create binary partition group based on the above predicate * 4.) we count the number of odd/even in the group based on size of the binary groups * 5.) write it global counter of odd. * 6.) sum the values loaded by individual threads(using reduce) and write it to global even & odd elements sum. * * **NOTE** : * binary_partition results in splitting warp into divergent thread groups * this is not good from performance perspective, but in cases where warp * divergence is inevitable one can use binary_partition group. */ #include #include #include #include namespace cg = cooperative_groups; void initOddEvenArr(int *inputArr, unsigned int size) { for (int i = 0; i < size; i++) { inputArr[i] = rand() % 50; } } /** * CUDA kernel device code * * Creates cooperative groups and performs odd/even counting & summation. */ __global__ void oddEvenCountAndSumCG(int *inputArr, int *numOfOdds, int *sumOfOddAndEvens, unsigned int size) { cg::thread_block cta = cg::this_thread_block(); cg::grid_group grid = cg::this_grid(); cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta); for (int i = grid.thread_rank(); i < size; i += grid.size()) { int elem = inputArr[i]; auto subTile = cg::binary_partition(tile32, elem & 1); if (elem & 1) // Odd numbers group { int oddGroupSum = cg::reduce(subTile, elem, cg::plus()); if (subTile.thread_rank() == 0) { // Add number of odds present in this group of Odds. atomicAdd(numOfOdds, subTile.size()); // Add local reduction of odds present in this group of Odds. atomicAdd(&sumOfOddAndEvens[0], oddGroupSum); } } else // Even numbers group { int evenGroupSum = cg::reduce(subTile, elem, cg::plus()); if (subTile.thread_rank() == 0) { // Add local reduction of even present in this group of evens. atomicAdd(&sumOfOddAndEvens[1], evenGroupSum); } } // reconverge warp so for next loop iteration we ensure convergence of // above diverged threads to perform coalesced loads of inputArr. cg::sync(tile32); } } /** * Host main routine */ int main(int argc, const char **argv) { int deviceId = findCudaDevice(argc, argv); int *h_inputArr, *d_inputArr; int *h_numOfOdds, *d_numOfOdds; int *h_sumOfOddEvenElems, *d_sumOfOddEvenElems; unsigned int arrSize = 1024 * 100; checkCudaErrors(cudaMallocHost(&h_inputArr, sizeof(int) * arrSize)); checkCudaErrors(cudaMallocHost(&h_numOfOdds, sizeof(int))); checkCudaErrors(cudaMallocHost(&h_sumOfOddEvenElems, sizeof(int) * 2)); initOddEvenArr(h_inputArr, arrSize); cudaStream_t stream; checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking)); checkCudaErrors(cudaMalloc(&d_inputArr, sizeof(int) * arrSize)); checkCudaErrors(cudaMalloc(&d_numOfOdds, sizeof(int))); checkCudaErrors(cudaMalloc(&d_sumOfOddEvenElems, sizeof(int) * 2)); checkCudaErrors(cudaMemcpyAsync(d_inputArr, h_inputArr, sizeof(int) * arrSize, cudaMemcpyHostToDevice, stream)); checkCudaErrors(cudaMemsetAsync(d_numOfOdds, 0, sizeof(int), stream)); checkCudaErrors( cudaMemsetAsync(d_sumOfOddEvenElems, 0, 2 * sizeof(int), stream)); // Launch the kernel int threadsPerBlock = 0; int blocksPerGrid = 0; checkCudaErrors(cudaOccupancyMaxPotentialBlockSize( &blocksPerGrid, &threadsPerBlock, oddEvenCountAndSumCG, 0, 0)); printf("\nLaunching %d blocks with %d threads...\n\n", blocksPerGrid, threadsPerBlock); oddEvenCountAndSumCG<<>>( d_inputArr, d_numOfOdds, d_sumOfOddEvenElems, arrSize); checkCudaErrors(cudaMemcpyAsync(h_numOfOdds, d_numOfOdds, sizeof(int), cudaMemcpyDeviceToHost, stream)); checkCudaErrors(cudaMemcpyAsync(h_sumOfOddEvenElems, d_sumOfOddEvenElems, 2 * sizeof(int), cudaMemcpyDeviceToHost, stream)); checkCudaErrors(cudaStreamSynchronize(stream)); printf("Array size = %d Num of Odds = %d Sum of Odds = %d Sum of Evens %d\n", arrSize, h_numOfOdds[0], h_sumOfOddEvenElems[0], h_sumOfOddEvenElems[1]); printf("\n...Done.\n\n"); checkCudaErrors(cudaFreeHost(h_inputArr)); checkCudaErrors(cudaFreeHost(h_numOfOdds)); checkCudaErrors(cudaFreeHost(h_sumOfOddEvenElems)); checkCudaErrors(cudaFree(d_inputArr)); checkCudaErrors(cudaFree(d_numOfOdds)); checkCudaErrors(cudaFree(d_sumOfOddEvenElems)); return EXIT_SUCCESS; }