"""Script to run end-to-end evaluation on the benchmark. Modified from https://github.com/web-arena-x/webarena/blob/main/run.py. """ import argparse import glob import json import logging import os import random import subprocess import tempfile import time from pathlib import Path from typing import List import openai import requests import torch from PIL import Image from agent import ( PromptAgent, construct_agent, ) from agent.prompts import * from browser_env import ( Action, ActionTypes, ScriptBrowserEnv, StateInfo, Trajectory, create_stop_action, ) from browser_env.actions import is_equivalent from browser_env.auto_login import get_site_comb_from_filepath from browser_env.helper_functions import ( RenderHelper, get_action_description, ) from evaluation_harness import evaluator_router, image_utils DATASET = os.environ["DATASET"] LOG_FOLDER = "log_files" Path(LOG_FOLDER).mkdir(parents=True, exist_ok=True) LOG_FILE_NAME = f"{LOG_FOLDER}/log_{time.strftime('%Y%m%d%H%M%S', time.localtime())}_{random.randint(0, 10000)}.log" logger = logging.getLogger("logger") logger.setLevel(logging.INFO) console_handler = logging.StreamHandler() console_handler.setLevel(logging.DEBUG) logger.addHandler(console_handler) file_handler = logging.FileHandler(LOG_FILE_NAME) file_handler.setLevel(logging.DEBUG) logger.addHandler(file_handler) # Set the log format formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s") console_handler.setFormatter(formatter) file_handler.setFormatter(formatter) def config() -> argparse.Namespace: parser = argparse.ArgumentParser( description="Run end-to-end evaluation on the benchmark" ) parser.add_argument( "--render", action="store_true", help="Render the browser" ) parser.add_argument( "--slow_mo", type=int, default=0, help="Slow down the browser by the specified amount", ) parser.add_argument( "--action_set_tag", default="id_accessibility_tree", help="Action type" ) parser.add_argument( "--observation_type", choices=[ "accessibility_tree", "accessibility_tree_with_captioner", "html", "image", "image_som", ], default="accessibility_tree", help="Observation type", ) parser.add_argument( "--current_viewport_only", action="store_true", help="Only use the current viewport for the observation", ) parser.add_argument("--viewport_width", type=int, default=1280) parser.add_argument("--viewport_height", type=int, default=2048) parser.add_argument("--save_trace_enabled", action="store_true") parser.add_argument("--sleep_after_execution", type=float, default=0.0) parser.add_argument("--max_steps", type=int, default=30) # agent config parser.add_argument("--agent_type", type=str, default="prompt") parser.add_argument( "--instruction_path", type=str, default="agents/prompts/state_action_agent.json", ) parser.add_argument( "--parsing_failure_th", help="When consecutive parsing failures exceed this threshold, the agent will terminate early.", type=int, default=3, ) parser.add_argument( "--repeating_action_failure_th", help="When consecutive repeated actions exceed this threshold, the agent will terminate early.", type=int, default=5, ) parser.add_argument("--test_config_base_dir", type=str) parser.add_argument( "--eval_captioning_model_device", type=str, default="cpu", choices=["cpu", "cuda"], help="Device to run eval captioning model on. By default, runs it on CPU.", ) parser.add_argument( "--eval_captioning_model", type=str, default="Salesforce/blip2-flan-t5-xl", choices=["Salesforce/blip2-flan-t5-xl"], help="Captioning backbone for VQA-type evals.", ) parser.add_argument( "--captioning_model", type=str, default="Salesforce/blip2-flan-t5-xl", choices=["Salesforce/blip2-flan-t5-xl", "llava-hf/llava-1.5-7b-hf"], help="Captioning backbone for accessibility tree alt text.", ) # lm config parser.add_argument("--provider", type=str, default="openai") parser.add_argument("--model", type=str, default="gpt-3.5-turbo-0613") parser.add_argument("--mode", type=str, default="chat") parser.add_argument("--temperature", type=float, default=1.0) parser.add_argument("--top_p", type=float, default=0.9) parser.add_argument("--context_length", type=int, default=0) parser.add_argument("--max_tokens", type=int, default=384) parser.add_argument("--stop_token", type=str, default=None) parser.add_argument( "--max_retry", type=int, help="max retry times to perform generations when parsing fails", default=1, ) parser.add_argument( "--max_obs_length", type=int, help="when not zero, will truncate the observation to this length before feeding to the model", default=3840, ) # example config parser.add_argument("--test_start_idx", type=int, default=0) parser.add_argument("--test_end_idx", type=int, default=910) # logging related parser.add_argument("--result_dir", type=str, default="") args = parser.parse_args() # check the whether the action space is compatible with the observation space if ( args.action_set_tag == "id_accessibility_tree" and args.observation_type not in [ "accessibility_tree", "accessibility_tree_with_captioner", "image_som", ] ): raise ValueError( f"Action type {args.action_set_tag} is incompatible with the observation type {args.observation_type}" ) return args def early_stop( trajectory: Trajectory, max_steps: int, thresholds: dict[str, int] ) -> tuple[bool, str]: """Check whether need to stop early""" # reach the max step num_steps = (len(trajectory) - 1) / 2 if num_steps >= max_steps: return True, f"Reach max steps {max_steps}" last_k_actions: list[Action] action_seq: list[Action] # Case: parsing failure for k times k = thresholds["parsing_failure"] last_k_actions = trajectory[1::2][-k:] # type: ignore[assignment] if len(last_k_actions) >= k: if all( [ action["action_type"] == ActionTypes.NONE for action in last_k_actions ] ): return True, f"Failed to parse actions for {k} times" # Case: same action for k times k = thresholds["repeating_action"] last_k_actions = trajectory[1::2][-k:] # type: ignore[assignment] action_seq = trajectory[1::2] # type: ignore[assignment] if len(action_seq) == 0: return False, "" last_action: Action = action_seq[-1] if last_action["action_type"] != ActionTypes.TYPE: if len(last_k_actions) >= k: if all( [ is_equivalent(action, last_action) for action in last_k_actions ] ): return True, f"Same action for {k} times" else: # check the action sequence if ( sum([is_equivalent(action, last_action) for action in action_seq]) >= k ): return True, f"Same typing action for {k} times" return False, "" def update_action_history(path: str, task_id: int, actions: List[str], score: float=-0.1): obj = { "task_id": task_id, "score": score, "actions": actions } json.dump(obj, open(path, "w"), indent=4) def test( args: argparse.Namespace, config_file_list: list[str] ) -> None: scores = [] max_steps = args.max_steps early_stop_thresholds = { "parsing_failure": args.parsing_failure_th, "repeating_action": args.repeating_action_failure_th, } if args.observation_type in [ "accessibility_tree_with_captioner", # "image_som", ]: device = torch.device("cuda") if torch.cuda.is_available() else "cpu" dtype = torch.float16 if torch.cuda.is_available() else torch.float32 caption_image_fn = image_utils.get_captioning_fn( device, dtype, args.captioning_model ) else: caption_image_fn = None # Load a (possibly different) captioning model for running VQA evals. if DATASET == 'visualwebarena': if ( caption_image_fn and args.eval_captioning_model == args.captioning_model ): eval_caption_image_fn = caption_image_fn else: eval_caption_image_fn = image_utils.get_captioning_fn( args.eval_captioning_model_device, torch.float16 if ( torch.cuda.is_available() and args.eval_captioning_model_device == "cuda" ) else torch.float32, args.eval_captioning_model, ) else: caption_image_fn = None eval_caption_image_fn = None agent = construct_agent( args, captioning_fn=caption_image_fn if args.observation_type == "accessibility_tree_with_captioner" else None, ) # NOTE: captioning_fn here is used for captioning input images. env = ScriptBrowserEnv( headless=not args.render, slow_mo=args.slow_mo, observation_type=args.observation_type, current_viewport_only=args.current_viewport_only, viewport_size={ "width": args.viewport_width, "height": args.viewport_height, }, save_trace_enabled=args.save_trace_enabled, sleep_after_execution=args.sleep_after_execution, # NOTE: captioning_fn here is used for LLM + captioning baselines. # This can be different from the captioning model used for evals. captioning_fn=caption_image_fn, ) for config_file in config_file_list: try: render_helper = RenderHelper( config_file, args.result_dir, args.action_set_tag ) # Load task. with open(config_file) as f: _c = json.load(f) intent = _c["intent"] task_id = _c["task_id"] image_paths = _c.get("image", None) images = [] # automatically login if _c["storage_state"]: cookie_file_name = os.path.basename(_c["storage_state"]) comb = get_site_comb_from_filepath(cookie_file_name) temp_dir = tempfile.mkdtemp() # subprocess to renew the cookie subprocess.run( [ "python", "browser_env/auto_login.py", "--auth_folder", temp_dir, "--site_list", *comb, ] ) _c["storage_state"] = f"{temp_dir}/{cookie_file_name}" assert os.path.exists(_c["storage_state"]) # update the config file config_file = f"{temp_dir}/{os.path.basename(config_file)}" with open(config_file, "w") as f: json.dump(_c, f) # Load input images for the task, if any. if image_paths is not None: if isinstance(image_paths, str): image_paths = [image_paths] for image_path in image_paths: # Load image either from the web or from a local path. if image_path.startswith("http"): input_image = Image.open(requests.get(image_path, stream=True).raw) else: input_image = Image.open(image_path) images.append(input_image) logger.info(f"[Config file]: {config_file}") logger.info(f"[Intent]: {intent}") agent.reset(config_file) trajectory: Trajectory = [] obs, info = env.reset(options={"config_file": config_file}) state_info: StateInfo = {"observation": obs, "info": info} trajectory.append(state_info) meta_data = {"action_history": ["None"]} out_path = os.path.join(args.result_dir, "actions", f"{task_id}.json") actions = [] while True: update_action_history(out_path, task_id, actions=actions) early_stop_flag, stop_info = early_stop( trajectory, max_steps, early_stop_thresholds ) if early_stop_flag: action = create_stop_action(f"Early stop: {stop_info}") else: try: action = agent.next_action( trajectory, intent, images=images, meta_data=meta_data, ) except ValueError as e: # get the error message action = create_stop_action(f"ERROR: {str(e)}") trajectory.append(action) action_str = get_action_description( action, state_info["info"]["observation_metadata"], action_set_tag=args.action_set_tag, prompt_constructor=agent.prompt_constructor if isinstance(agent, PromptAgent) else None, ) render_helper.render( action, state_info, meta_data, args.render_screenshot ) meta_data["action_history"].append(action_str) actions.append(action_str) print(action_str) if action["action_type"] == ActionTypes.STOP: break obs, _, terminated, _, info = env.step(action) state_info = {"observation": obs, "info": info} trajectory.append(state_info) if terminated: # add a action place holder trajectory.append(create_stop_action("")) break # NOTE: eval_caption_image_fn is used for running eval_vqa functions. evaluator = evaluator_router( config_file, captioning_fn=eval_caption_image_fn ) score = evaluator( trajectory=trajectory, config_file=config_file, page=env.page ) update_action_history(out_path, task_id, actions=actions, score=score) scores.append(score) if score == 1: logger.info(f"[Result] (PASS) {config_file}") else: logger.info(f"[Result] (FAIL) {config_file}") if args.save_trace_enabled: env.save_trace( Path(args.result_dir) / "traces" / f"{task_id}.zip" ) except openai.OpenAIError as e: logger.info(f"[OpenAI Error] {repr(e)}") except Exception as e: logger.info(f"[Unhandled Error] {repr(e)}]") import traceback # write to error file with open(Path(args.result_dir) / "error.txt", "a") as f: f.write(f"[Config file]: {config_file}\n") f.write(f"[Unhandled Error] {repr(e)}\n") f.write(traceback.format_exc()) # write stack trace to file render_helper.close() env.close() if len(scores): logger.info(f"Average score: {sum(scores) / len(scores)}") def prepare(args: argparse.Namespace) -> None: # convert prompt python files to json from agent.prompts import to_json to_json.run() # prepare result dir result_dir = args.result_dir if not result_dir: result_dir = ( f"cache/results_{time.strftime('%Y%m%d%H%M%S', time.localtime())}" ) if not Path(result_dir).exists(): Path(result_dir).mkdir(parents=True, exist_ok=True) args.result_dir = result_dir logger.info(f"Create result dir: {result_dir}") if not (Path(result_dir) / "traces").exists(): (Path(result_dir) / "traces").mkdir(parents=True) os.makedirs(os.path.join(result_dir, "actions"), exist_ok=True) # log the log file with open(os.path.join(result_dir, "log_files.txt"), "a+") as f: f.write(f"{LOG_FILE_NAME}\n") def get_unfinished(config_files: list[str], result_dir: str) -> list[str]: result_files = glob.glob(f"{result_dir}/*.html") task_ids = [ os.path.basename(f).split(".")[0].split("_")[1] for f in result_files ] unfinished_configs = [] for config_file in config_files: task_id = os.path.basename(config_file).split(".")[0] try: with open(f"{result_dir}/actions/{task_id}.json", "r") as f: jd = json.load(f) except: jd = {} if task_id not in task_ids or jd.get('score', -1) < 0: unfinished_configs.append(config_file) return unfinished_configs def dump_config(args: argparse.Namespace) -> None: config_file = Path(args.result_dir) / "config.json" if not config_file.exists(): with open(config_file, "w") as f: json.dump(vars(args), f, indent=4) logger.info(f"Dump config to {config_file}") if __name__ == "__main__": os.environ["TOKENIZERS_PARALLELISM"] = "false" args = config() args.sleep_after_execution = 2.5 prepare(args) test_config_base_dir = args.test_config_base_dir test_file_list = [] st_idx = args.test_start_idx ed_idx = args.test_end_idx for i in range(st_idx, ed_idx): test_file_list.append(os.path.join(test_config_base_dir, f"{i}.json")) test_file_list = get_unfinished(test_file_list, args.result_dir) print(f"Total {len(test_file_list)} tasks left") args.render = False args.render_screenshot = True args.save_trace_enabled = True args.current_viewport_only = True dump_config(args) test(args, test_file_list)