add quickstart for og and mc

This commit is contained in:
mistyreed63849 2024-10-12 13:57:01 +08:00
parent 64b8e24e0a
commit 335c7547f7
18 changed files with 320 additions and 31 deletions

View File

@ -29,7 +29,7 @@ Compared to its predecessor [AgentBench](https://github.com/THUDM/AgentBench), V
- [Dataset Summary](#dataset-summary)
- [Leaderboard](#leaderboard)
- [Quick Start](#quick-start)
- [Next Steps](#next-steps)
- [Acknowledgement](#acknowledgement)
- [Citation](#citation)
## Dataset Summary
@ -45,7 +45,77 @@ Here is the scores on test set results of VAB. All metrics are task Success Rate
![](./assets/leaderboard.png)
## Quick Start
TODO
This section will guide you on how to use `gpt-4o-2024-05-13` as an agent to launch 4 concurrent `VAB-Minecraft` tasks.
For the specific framework structure, please refer to AgentBench's [Framework Introduction](https://github.com/THUDM/AgentBench/blob/main/docs/Introduction_en.md).
For more detailed configuration and launch methods, please check [Configuration Guide](docs/Config_en.md)
and [Program Entrance Guide](docs/Entrance_en.md).
### Step 1. Prerequisites
Clone this repo and install the dependencies.
```bash
cd VisualAgentBench
conda create -n vab python=3.9
conda activate vab
pip install -r requirements.txt
```
Ensure that [Docker](https://www.docker.com/) is properly installed.
```bash
docker ps
```
For specific environments, please refer to their respective prerequisites: [VAB-OmniGibson](docs/README_setup.md#Setup-for-VAB-OmniGibson), [VAB-Minecraft](docs/README_setup.md#Setup-for-VAB-Minecraft), [VAB-CSS](docs/README_setup.md#Setup-for-VAB-CSS).
### Step 2. Configure the Agent
Fill in your OpenAI API Key at the correct location in `configs/agents/openai-chat.yaml`.
You can try using `python -m src.client.agent_test` to check if your agent is configured correctly.
### Step 3. Start the task server
Starting the task worker involves specific tasks. Manual starting might be cumbersome; hence, we provide an automated script.
The assumption for this step is that ports from 5000 to 5015 are available. For Mac OS system, you may want to follow [here](https://stackoverflow.com/questions/69955686/why-cant-i-run-the-project-on-port-5000) to free port 5000 to use.
```bash
python -m src.start_task -a
```
This will launch 4 task_workers for `VAB-Minecraft` tasks and automatically connect them to the controller on port 5000. **After executing this command, please allow approximately 1 minute for the task setup to complete.** If the terminal shows ".... 200 OK", you can open another terminal and follow step 4.
### Step 4. Start the assigner
This step is to actually start the tasks.
If everything is correctly configured so far, you can now initiate the task tests.
```bash
python -m src.assigner --auto-retry
```
### Next Steps
If you wish to launch more tasks or use other models, you can refer to the content in [Configuration Guide](docs/Config_en.md) and [Program Entrance Guide](docs/Entrance_en.md).
For instance, if you want to launch VAB-OmniGibson tasks, in step 3:
```bash
python -m src.start_task -a -s omnigibson 2
```
In step 4:
```bash
python -m src.assigner --auto-retry --config configs/assignments/omnigibson.yaml
```
You can modify the config files to launch other tasks or change task concurrency.
## Acknowledgement
This project is heavily built upon the following repositories (to be updated):

View File

@ -3,7 +3,7 @@ parameters:
url: https://api.openai.com/v1/chat/completions
headers:
Content-Type: application/json
Authorization: Bearer
Authorization: Bearer <% PUT-YOUR-OPENAI-KEY-HERE %>
body:
temperature: 0
prompter:

View File

@ -2,9 +2,9 @@ import: definition.yaml
concurrency:
task:
# css-std: 5
# omnigibson-std: 4
minecraft-std: 4
# css: 5
# omnigibson: 4
minecraft: 4
agent:
gpt-4o-2024-05-13: 4
@ -12,9 +12,9 @@ assignments: # List[Assignment] | Assignment
- agent: # "task": List[str] | str , "agent": List[str] | str
- gpt-4o-2024-05-13
task:
# - css-std
# - omnigibson-std
- minecraft-std
# - css
# - omnigibson
- minecraft
# output: "outputs/{TIMESTAMP}"
# output: "outputs/css_test"

View File

@ -0,0 +1,16 @@
import: definition.yaml
concurrency:
task:
omnigibson: 2
agent:
gpt-4o-2024-05-13: 4
assignments: # List[Assignment] | Assignment
- agent: # "task": List[str] | str , "agent": List[str] | str
- gpt-4o-2024-05-13
task:
- omnigibson
# output: "outputs/{TIMESTAMP}"
output: "outputs/omnigibson"

View File

@ -2,6 +2,6 @@ definition:
import: tasks/task_assembly.yaml
start:
# css-std: 1
# omnigibson-std: 4
minecraft-std: 4
# css: 1
# omnigibson: 2
minecraft: 4

View File

@ -10,8 +10,8 @@ default:
# name: "CSS-dev"
# data_dir: "ddata/css_dataset"
css-std:
css:
parameters:
name: "CSS-std"
name: "CSS"
data_dir: "data/css_dataset"
output_dir: "outputs/css_test"

View File

@ -1,7 +1,7 @@
minecraft-std:
minecraft:
module: "src.server.tasks.minecraft.Minecraft"
parameters:
name: "Minecraft-std"
name: "Minecraft"
max_round: 100
available_ports:
- 11000

View File

@ -1,7 +1,7 @@
omnigibson-std:
omnigibson:
module: "src.server.tasks.omnigibson.OmniGibson"
parameters:
name: "OmniGibson-std"
name: "OmniGibson"
max_round: 100
available_ports:
- 12000

113
docs/README_setup.md Normal file
View File

@ -0,0 +1,113 @@
# Setup for VAB-OmniGibson
## Installation
1. We have tested on Ubuntu. VAB-OmniGibson requires **11 GB NVIDIA RTX GPU** and NVIDIA GPU driver version >= 450.80.02. For more detailed requirements, please refer to [Isaac Sim 2022.2.0](https://docs.omniverse.nvidia.com/isaacsim/latest/installation/requirements.html).
2. Besides [docker](https://www.docker.com/), install [NVIDIA container toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) on your machine.
3. Get pre-built docker image.
- If you have access to docker hub:
```bash
docker pull tianjiezhang/vab_omnigibson:latest
```
- Or you can download from ModelScope.
1. Make sure `git-lfs` is installed.
2. Download from ModelScope:
```bash
git lfs install
git clone https://www.modelscope.cn/datasets/VisualAgentBench/VAB-OmniGibson-Docker.git
```
3. Load the docker image from ModelScope dataset.
```bash
docker load -i VAB-OmniGibson-Docker/vab_omnigibson.tar
```
4. Download datasets of OmniGibson, VAB-OmniGibson test activities, and related scene files. Note that about 25 GB data will be downloaded to `data/omnigibson`, and make sure you have access to google drive.
```bash
python scripts/omnigibson_download.py
```
## Get Started
1. According to your hardware equipment, fill `available_ports` and `available_devices` in the task configuration file `configs/tasks/omnigibson.yaml`.
- `available_ports`: Please fill in available ports in your machine. Each concurrent docker container requires 1 port for communication with the task server. Ensure that you provide enough ports to accommodate the expected concurrency.
- `available_devices`: Please fill in GPU IDs and their corresponding capability of concurrency. Each concurrent docker container occupies about **11 GB** memory. Ensure that you provide enough GPU memory to accommodate the expected concurrency.
2. It's recommended to increase the file change watcher for Linux. See [Omniverse guide](https://docs.omniverse.nvidia.com/dev-guide/latest/linux-troubleshooting.html#to-update-the-watcher-limit) for more details.
- View the current watcher limit: `cat /proc/sys/fs/inotify/max_user_watches`.
- Update the watcher limit:
1. Edit `/etc/sysctl.conf` and add `fs.inotify.max_user_watches=524288` line.
2. Load the new value: `sudo sysctl -p`.
**Note: If you manually shut down the task server and assigner, please ensure you also stop the OmniGibson containers to free up the ports!**
# Setup for VAB-Minecraft
## Installation
1. We have tested on Ubuntu. VAB-Minecraft requires at least 4 GB NVIDIA GPU and NVIDIA GPU driver version >= 530.30.02.
2. Besides [docker](https://www.docker.com/), install [NVIDIA container toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) on your machine.
3. Get pre-built docker image.
- If you have access to docker hub:
```bash
docker pull tianjiezhang/vab_minecraft:latest
```
- Or you can download from ModelScope.
1. Make sure `git-lfs` is installed.
2. Download from ModelScope:
```bash
git lfs install
git clone https://www.modelscope.cn/datasets/VisualAgentBench/VAB-Minecraft.git
```
3. Load the docker image from ModelScope dataset.
```bash
docker load -i VAB-Minecraft/vab_minecraft.tar
```
4. Download weights of Steve-1 to `data/minecraft`. Please make sure you have access to google drive.
```bash
python scripts/minecraft_download.py
```
## Get Started
According to your hardware equipment, fill `available_ports` and `available_devices` in the task configuration file `configs/tasks/minecraft.yaml`.
- `available_ports`: Please fill in available ports in your machine. Each concurrent docker container requires 1 port for communication with the task server. Ensure that you provide enough ports to accommodate the expected concurrency.
- `available_devices`: Please fill in GPU IDs and their corresponding capability of concurrency. Each concurrent docker container occupies about **3.3 GB** memory. Ensure that you provide enough GPU memory to accommodate the expected concurrency.
**Note: If you manually shut down the task server and assigner, please ensure you also stop the Minecraft containers to free up the ports!**
# Setup for VAB-CSS
TODO

18
requirements.txt Normal file
View File

@ -0,0 +1,18 @@
numpy~=1.23.5
pydantic~=1.10.12
requests~=2.28.1
tqdm~=4.65.0
pyyaml~=6.0
jsonlines~=3.1.0
aiohttp~=3.8.4
uvicorn~=0.22.0
fastapi~=0.101.1
urllib3~=1.26.15
docker==6.1.2
networkx~=2.8.4
anthropic~=0.4.1
fschat~=0.2.31
accelerate~=0.23.0
transformers~=4.34.0
pillow==10.4.0
gdown==5.2.0

View File

@ -0,0 +1,47 @@
import os
import subprocess
directories_to_create = [
"data/minecraft/mineclip",
"data/minecraft/steve1",
"data/minecraft/vpt"
]
files_to_download = [
{
"url": "https://openaipublic.blob.core.windows.net/minecraft-rl/models/2x.model",
"output_dir": "data/minecraft/vpt",
"output_file": "2x.model"
},
{
"url": "https://drive.google.com/uc?id=1uaZM1ZLBz2dZWcn85rZmjP7LV6Sg5PZW",
"output_dir": "data/minecraft/mineclip",
"output_file": "attn.pth"
},
{
"url": "https://drive.google.com/uc?id=1E3fd_-H1rRZqMkUKHfiMhx-ppLLehQPI",
"output_dir": "data/minecraft/steve1",
"output_file": "steve1.weights"
},
{
"url": "https://drive.google.com/uc?id=1OdX5wiybK8jALVfP5_dEo0CWm9BQbDES",
"output_dir": "data/minecraft/steve1",
"output_file": "steve1_prior.pt"
}
]
for directory in directories_to_create:
if not os.path.exists(directory):
os.makedirs(directory)
for file_info in files_to_download:
url = file_info["url"]
output_dir = file_info["output_dir"]
output_file = file_info["output_file"]
output_path = os.path.join(output_dir, output_file)
if not os.path.exists(output_path):
if url.startswith("https://drive.google.com"):
subprocess.run(["gdown", url, "-O", output_path])
elif url.startswith("http"):
subprocess.run(["wget", url, "-P", output_dir])

6
scripts/minecraft_weights.sh Normal file → Executable file
View File

@ -4,8 +4,8 @@ mkdir -p data/minecraft/vpt
wget https://openaipublic.blob.core.windows.net/minecraft-rl/models/2x.model -P data/minecraft/vpt
curl -L -o data/minecraft/mineclip/attn.pth "https://drive.google.com/uc?export=download&id=1uaZM1ZLBz2dZWcn85rZmjP7LV6Sg5PZW"
gdown https://drive.google.com/uc?id=1uaZM1ZLBz2dZWcn85rZmjP7LV6Sg5PZW -O data/minecraft/mineclip/attn.pth
curl -L -o data/minecraft/steve1/steve1.weights "https://drive.google.com/uc?id=1E3fd_-H1rRZqMkUKHfiMhx-ppLLehQPI"
gdown https://drive.google.com/uc?id=1E3fd_-H1rRZqMkUKHfiMhx-ppLLehQPI -O data/minecraft/steve1/steve1.weights
curl -L -o data/weights/steve1/steve1_prior.pt "https://drive.google.com/uc?id=1OdX5wiybK8jALVfP5_dEo0CWm9BQbDES"
gdown https://drive.google.com/uc?id=1OdX5wiybK8jALVfP5_dEo0CWm9BQbDES -O data/minecraft/steve1/steve1_prior.pt

View File

@ -4,24 +4,48 @@ from src.configs import ConfigLoader
from src.typings import InstanceFactory
from .agent import AgentClient
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='configs/agents/api_agents.yaml')
parser.add_argument('--agent', type=str, default='gpt-3.5-turbo-0613')
parser.add_argument('--agent', type=str, default='gpt-4o-2024-05-13')
return parser.parse_args()
def interaction(agent: AgentClient):
history = [{
"role": "user",
"content": [
{
"type": "text",
"text": "Briefly describe the image."
},
{
"type": "image_url",
"image_url": {
"url": f".png"
}
}
]
}]
print("================= USER ====================")
print(">>> Briefly describe the image. (image: `assets/cover.png`)")
try:
print("================ AGENT ====================")
agent_response = agent.inference(history)
print(agent_response)
history.append({"role": "agent", "content": agent_response})
except Exception as e:
print(e)
exit(0)
try:
history = []
while True:
print("================= USER ===================")
user = input(">>> ")
history.append({"role": "user", "content": user})
try:
agent_response = agent.inference(history)
print("================ AGENT ====================")
agent_response = agent.inference(history)
print(agent_response)
history.append({"role": "agent", "content": agent_response})
except Exception as e:

View File

@ -254,7 +254,7 @@ class HTTPAgent(AgentClient):
history = replace_image_url(history, keep_path=False, throw_details=False)
else:
history = replace_image_url(history, keep_path=True, throw_details=True)
for _ in range(5):
for _ in range(10):
try:
if self.prompter_type == "role_content_dict":
body = self.body.copy()
@ -288,5 +288,5 @@ class HTTPAgent(AgentClient):
else:
resp = resp.json()
return self.return_format.format(response=resp)
time.sleep(_ + 2)
time.sleep(_ + 1)
raise Exception("Failed.")

View File

@ -47,7 +47,8 @@ class Minecraft(Task):
if result.status != SampleStatus.RUNNING:
return result
except Exception as e:
print(e)
import traceback
traceback.print_exc()
return TaskSampleExecutionResult(status=SampleStatus.TASK_ERROR, result={"error": e})
finally:
try:
@ -81,7 +82,7 @@ async def main():
output_dir = "outputs/minecraft"
max_round = 100
docker_image = "tianjiezhang/vab_minecraft:latest"
task = Minecraft(available_ports=available_ports, available_devices=available_devices, max_round=max_round, data_dir=data_dir, output_dir=output_dir, docker_image=docker_image, name="Minecraft-std")
task = Minecraft(available_ports=available_ports, available_devices=available_devices, max_round=max_round, data_dir=data_dir, output_dir=output_dir, docker_image=docker_image, name="Minecraft")
print(Container.available_devices)
print(Container.available_ports)
session = Session()

View File

@ -2,7 +2,6 @@ from __future__ import annotations
import os
from functools import lru_cache
# disable HuggingFace warning
os.environ["TOKENIZERS_PARALLELISM"] = "false"

View File

@ -4,3 +4,4 @@ VPT_MODEL_PATH = Path(__file__).parent / "weights" / "vpt" / "2x.model"
VPT_WEIGHT_PATH = Path(__file__).parent / "weights" / "steve1" / "steve1.weights"
PRIOR_WEIGHT_PATH = Path(__file__).parent / "weights" / "steve1" / "steve1_prior.pt"
MINECLIP_WEIGHT_PATH = Path(__file__).parent / "weights" / "mineclip" / "attn.pth"
# OPENAI_CLIP_PATH = Path(__file__).parent / "weights" / "clip-vit-base-patch16"

View File

@ -84,7 +84,7 @@ async def main():
output_dir = "outputs/omnigibson"
max_round = 100
docker_image = "vab_omnigibson:latest"
task = OmniGibson(available_ports=available_ports, available_devices=available_devices, max_round=max_round, data_dir=data_dir, output_dir=output_dir, docker_image=docker_image, name="OmniGibson-std")
task = OmniGibson(available_ports=available_ports, available_devices=available_devices, max_round=max_round, data_dir=data_dir, output_dir=output_dir, docker_image=docker_image, name="OmniGibson")
print(Container.available_devices)
print(Container.available_ports)
session = Session()