221 lines
7.6 KiB
Python
221 lines
7.6 KiB
Python
"""Implements helper functions to assist evaluation cases where other evaluators are not suitable."""
|
|
import json
|
|
from typing import Any
|
|
from urllib.parse import urlparse
|
|
|
|
import requests
|
|
from playwright.sync_api import CDPSession, Page
|
|
|
|
from browser_env.env_config import (
|
|
ACCOUNTS,
|
|
GITLAB,
|
|
MAP,
|
|
REDDIT,
|
|
SHOPPING,
|
|
SHOPPING_ADMIN,
|
|
WIKIPEDIA,
|
|
)
|
|
from llms.providers.openai_utils import (
|
|
generate_from_openai_chat_completion,
|
|
)
|
|
|
|
|
|
def shopping_get_auth_token() -> str:
|
|
response = requests.post(
|
|
url=f"{SHOPPING}/rest/default/V1/integration/admin/token",
|
|
headers={"content-type": "application/json"},
|
|
data=json.dumps(
|
|
{
|
|
"username": ACCOUNTS["shopping_site_admin"]["username"],
|
|
"password": ACCOUNTS["shopping_site_admin"]["password"],
|
|
}
|
|
),
|
|
)
|
|
token: str = response.json()
|
|
return token
|
|
|
|
|
|
def shopping_get_latest_order_url() -> str:
|
|
"""Get the latest order url from the shopping website."""
|
|
|
|
header = {
|
|
"Authorization": f"Bearer {shopping_get_auth_token()}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
|
|
params = {
|
|
"searchCriteria[sortOrders][0][field]": "created_at",
|
|
"searchCriteria[sortOrders][0][direction]": "DESC",
|
|
"searchCriteria[pageSize]": "1",
|
|
}
|
|
|
|
response = requests.get(
|
|
f"{SHOPPING}/rest/V1/orders", params=params, headers=header
|
|
)
|
|
assert response.status_code == 200
|
|
response_obj = response.json()["items"][0]
|
|
order_id = int(response_obj["increment_id"])
|
|
order_url = f"{SHOPPING}/sales/order/view/order_id/{order_id}/"
|
|
return order_url
|
|
|
|
|
|
def shopping_get_sku_latest_review_author(sku: str) -> str:
|
|
"""Get the latest review for shopping admin."""
|
|
header = {
|
|
"Authorization": f"Bearer {shopping_get_auth_token()}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
response = requests.get(
|
|
f"{SHOPPING}/rest/V1/products/{sku}/reviews", headers=header
|
|
)
|
|
assert response.status_code == 200
|
|
response_obj = response.json()
|
|
if len(response_obj) == 0:
|
|
return ""
|
|
author: str = response_obj[-1]["nickname"]
|
|
return author
|
|
|
|
|
|
def shopping_get_sku_latest_review_rating(sku: str) -> str:
|
|
"""Get the latest review for shopping admin."""
|
|
header = {
|
|
"Authorization": f"Bearer {shopping_get_auth_token()}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
response = requests.get(
|
|
f"{SHOPPING}/rest/V1/products/{sku}/reviews", headers=header
|
|
)
|
|
assert response.status_code == 200
|
|
response_obj = response.json()
|
|
if len(response_obj) == 0:
|
|
return ""
|
|
assert response_obj[0]["ratings"][0]["rating_name"] == "Rating"
|
|
rating: str = str(response_obj[-1]["ratings"][0]["percent"])
|
|
return rating
|
|
|
|
|
|
def reddit_get_post_url(url: str) -> str:
|
|
"""Get the post url"""
|
|
# Url is http://domain/f/subreddit/post_id/...
|
|
# get domain, subreddit, post_id
|
|
domain = urlparse(url).netloc
|
|
tok_url = urlparse(url).path.split("/")
|
|
# not a valid post/comment url, return the url as is
|
|
if len(tok_url) < 4:
|
|
return url
|
|
if tok_url[1] != "f":
|
|
return url
|
|
subreddit = urlparse(url).path.split("/")[2]
|
|
post_id = urlparse(url).path.split("/")[3]
|
|
scheme = urlparse(url).scheme
|
|
post_url = f"{scheme}://{domain}/f/{subreddit}/{post_id}/"
|
|
return post_url
|
|
|
|
|
|
def gitlab_get_project_memeber_role(page: Page, account_name: str) -> str:
|
|
# get the account index
|
|
try:
|
|
account_idx = page.evaluate(
|
|
f"""(() => {{
|
|
const elements = document.querySelectorAll("td[data-label='Account'] span.gl-avatar-labeled-sublabel");
|
|
let index = -1; // Default value if not found
|
|
|
|
for(let i = 0; i < elements.length; i++) {{
|
|
if(elements[i].outerText === '@{account_name}') {{
|
|
index = i;
|
|
break;
|
|
}}
|
|
}}
|
|
|
|
return index;
|
|
}})()"""
|
|
)
|
|
|
|
# get the role
|
|
role: str = page.evaluate(
|
|
f"""(() => {{
|
|
return document.querySelectorAll("td.col-max-role span")[{account_idx}].outerText;
|
|
}})()"""
|
|
)
|
|
except Exception:
|
|
role = ""
|
|
|
|
return role
|
|
|
|
|
|
def llm_fuzzy_match(pred: str, reference: str, question: str) -> float:
|
|
"""Check whether the prediction matches the reference with GPT4-turbo"""
|
|
messages: list[dict[str, Any]] = []
|
|
# construct the question to ask
|
|
message = "Help a teacher to grade the answer of a student given a question. Keep in mind that the student has performed the action to get the answer. They are allowed to use different phrasing or wording to answer the question. The goal is to evaluate whether the key points in the reference answer are included in the student's answer. We allow answers with additional information that doesn't contradict the reference answer and review them as fully (not partially) correct.\n"
|
|
message += f"question: {question}\n"
|
|
message += f"reference answer: {reference}\n"
|
|
message += "all the string 'N/A' that you see is a special sequence that means 'not achievable'\n"
|
|
message += f"student answer: {pred}\n"
|
|
message += "Conclude the judgement by correct/incorrect/partially correct and explain why."
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful assistant"},
|
|
{"role": "user", "content": message},
|
|
]
|
|
response = generate_from_openai_chat_completion(
|
|
model="gpt-4-1106-preview",
|
|
messages=messages,
|
|
temperature=0,
|
|
max_tokens=768,
|
|
top_p=1.0,
|
|
context_length=0,
|
|
).lower()
|
|
print(response)
|
|
if "partially correct" in response or "incorrect" in response:
|
|
return 0.0
|
|
else:
|
|
assert "correct" in response
|
|
return 1.0
|
|
|
|
def llm_ua_match(pred: str, reference: str, question: str) -> float:
|
|
"""Check whether the prediction matches the reference with GPT-turbo"""
|
|
messages: list[dict[str, Any]] = []
|
|
# construct the question to ask
|
|
message = ""
|
|
message += f"task: {question}\n"
|
|
message += f"actual unachievable reason: {reference}\n"
|
|
message += f"reported unachievable reason: {pred}\n"
|
|
message += (
|
|
"The task described above is inherently unachievable due to the reason specified under 'actual unachievable reason'. "
|
|
"An individual previously attempted this task and was unable to complete it. They provided a reason for their failure, "
|
|
"which is listed under 'reported unachievable reason'. Your role is to review both the actual and reported reasons. "
|
|
"Determine if the reported reason aligns with the actual reason, even if implicitly. "
|
|
"If the stated reason is in line with the actual reason, respond with 'same'. Otherwise, respond with 'different'."
|
|
)
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful assistant"},
|
|
{"role": "user", "content": message},
|
|
]
|
|
|
|
response = generate_from_openai_chat_completion(
|
|
model="gpt-4-1106-preview",
|
|
messages=messages,
|
|
temperature=0,
|
|
max_tokens=768,
|
|
top_p=1.0,
|
|
context_length=0,
|
|
).lower()
|
|
if "different" in response:
|
|
return 0.0
|
|
else:
|
|
assert "same" in response
|
|
return 1.0
|
|
|
|
|
|
class PseudoPage:
|
|
def __init__(self, original_page: Page, url: str):
|
|
self.url = url
|
|
self.original_page = original_page
|
|
|
|
def __getattr__(self, attr: str) -> Any:
|
|
# Delegate attribute access to the original page object
|
|
if attr not in ["url"]:
|
|
return getattr(self.original_page, attr)
|
|
else:
|
|
return getattr(self, attr)
|