AgentOccam/Agent_E/ae/utils/openai_llm_helper.py
2025-01-22 11:32:35 -08:00

52 lines
2.3 KiB
Python

import os
from typing import Any
import openai
from dotenv import load_dotenv
from openai import AsyncOpenAI
class OpenAILLMHelper:
def __init__(self):
load_dotenv()
self.client = AsyncOpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
async def get_chat_completion_response_async(self, system_msg:str, user_msgs:list[str], model_name:str="gpt-4-turbo-preview", temperature:float=0.1, max_tokens:int=256, frequency_penalty:float=0.0, top_p: float=1.0, top_k: int=1, presence_penalty: float=0.0):
formatted_msgs: list[dict[str, Any]] = [{"role": "system", "content": system_msg}]
for user_msg in user_msgs:
formatted_msgs.append({"role": "user", "content": user_msg})
try:
response = await self.client.chat.completions.create(
model=model_name,
max_tokens=max_tokens,
temperature=temperature,
frequency_penalty=frequency_penalty,
top_p=top_p,
presence_penalty=presence_penalty,
messages=formatted_msgs # type: ignore
)
print(">>> openai response:", response)
if response.choices and len(response.choices) > 0 and response.choices[0].message and response.choices[0].message.content:
return response.choices[0].message.content
return None
except openai.APIConnectionError as e:
print("The server could not be reached")
print(e.__cause__) # an underlying Exception, likely raised within httpx.
raise Exception(f"Calling {model_name} LLM failed. The server could not be reached.") from e
except openai.RateLimitError as e:
print("A 429 status code was received; we should back off a bit.")
raise Exception(f"Calling {model_name} LLM failed. Rate limit error.") from e
except openai.APIStatusError as e:
print(e.status_code)
print(e.response)
raise Exception(f"Calling {model_name} LLM failed. Error: {e}") from e
# async def main():
# helper = OpenAILLMHelper()
# response = await helper.get_chat_completion_response_async(LLM_PROMPTS["SKILLS_HARVESTING_PROMPT"], ["What is the weather like today?"], temperature=0, max_tokens=4000)
# print("*******\nResponse: ", response, "\n*******\n")
# asyncio.run(main())