52 lines
2.3 KiB
Python
52 lines
2.3 KiB
Python
import os
|
|
from typing import Any
|
|
|
|
import openai
|
|
from dotenv import load_dotenv
|
|
from openai import AsyncOpenAI
|
|
|
|
|
|
class OpenAILLMHelper:
|
|
def __init__(self):
|
|
load_dotenv()
|
|
self.client = AsyncOpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
|
|
|
|
async def get_chat_completion_response_async(self, system_msg:str, user_msgs:list[str], model_name:str="gpt-4-turbo-preview", temperature:float=0.1, max_tokens:int=256, frequency_penalty:float=0.0, top_p: float=1.0, top_k: int=1, presence_penalty: float=0.0):
|
|
formatted_msgs: list[dict[str, Any]] = [{"role": "system", "content": system_msg}]
|
|
|
|
for user_msg in user_msgs:
|
|
formatted_msgs.append({"role": "user", "content": user_msg})
|
|
|
|
try:
|
|
response = await self.client.chat.completions.create(
|
|
model=model_name,
|
|
max_tokens=max_tokens,
|
|
temperature=temperature,
|
|
frequency_penalty=frequency_penalty,
|
|
top_p=top_p,
|
|
presence_penalty=presence_penalty,
|
|
messages=formatted_msgs # type: ignore
|
|
)
|
|
print(">>> openai response:", response)
|
|
if response.choices and len(response.choices) > 0 and response.choices[0].message and response.choices[0].message.content:
|
|
return response.choices[0].message.content
|
|
return None
|
|
except openai.APIConnectionError as e:
|
|
print("The server could not be reached")
|
|
print(e.__cause__) # an underlying Exception, likely raised within httpx.
|
|
raise Exception(f"Calling {model_name} LLM failed. The server could not be reached.") from e
|
|
except openai.RateLimitError as e:
|
|
print("A 429 status code was received; we should back off a bit.")
|
|
raise Exception(f"Calling {model_name} LLM failed. Rate limit error.") from e
|
|
except openai.APIStatusError as e:
|
|
print(e.status_code)
|
|
print(e.response)
|
|
raise Exception(f"Calling {model_name} LLM failed. Error: {e}") from e
|
|
|
|
# async def main():
|
|
# helper = OpenAILLMHelper()
|
|
# response = await helper.get_chat_completion_response_async(LLM_PROMPTS["SKILLS_HARVESTING_PROMPT"], ["What is the weather like today?"], temperature=0, max_tokens=4000)
|
|
# print("*******\nResponse: ", response, "\n*******\n")
|
|
|
|
# asyncio.run(main())
|