AgentOccam/Agent_E/ae/utils/gemini_llm_helper.py
2025-01-22 11:32:35 -08:00

78 lines
3.3 KiB
Python

import os
import re
from typing import Any
import google.generativeai as genai # type: ignore
from dotenv import load_dotenv
from Agent_E.ae.utils.logger import logger
GCP_BLOCK_NONE_SAFETY_SETTINGS: list[dict[str, str]] = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE"
},
]
# Pre-compile the regular expression pattern for removing json markers from LLM response
llm_json_or_python_begin_response_pattern = re.compile(r"^```(python|json)?\n?")
llm_end_response_pattern = re.compile(r"```$")
class GeminiLLMHelper:
def __init__(self):
load_dotenv()
genai.configure(api_key=os.environ.get("GEMINI_API_KEY")) # type: ignore
def process_llm_response(self, response: str):
if response:
# Use the compiled regex to replace the patterns with an empty string
response = llm_json_or_python_begin_response_pattern.sub("", response)
response = llm_end_response_pattern.sub("", response)
return response
async def get_chat_completion_response_async(self, system_msg:str, user_msgs:list[str], model_name:str="gemini-1.5-pro-latest", temperature:float=0.1,
max_tokens:int=256, top_p:int=1, top_k: int=1, safety_settings:list[dict[str, str]]=GCP_BLOCK_NONE_SAFETY_SETTINGS) -> str|None:
formatted_msgs: list[dict[str, Any]] = [{"role": "user", "parts": [system_msg]}]
user_msgs_parts: list[str] = []
for user_msg in user_msgs:
user_msgs_parts.append(user_msg)
formatted_msgs.append({"role": "user", "parts": user_msgs_parts})
response = None
try:
model = genai.GenerativeModel(model_name)
response = model.generate_content(formatted_msgs, stream=False, # type: ignore
generation_config=genai.types.GenerationConfig(
max_output_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k),
safety_settings=safety_settings)
return self.process_llm_response(response.text)
except ValueError:
if response:
logger.error(f"Response from GCP Gen AI did not contain text. prompt: {system_msg} and user messages: {user_msgs}. Candidates: {response.candidates}")
else:
logger.error(f"There was no response from GCP Gen AI for prompt: {system_msg} and user messages: {user_msgs}")
return None
# async def main():
# from Agent_E.ae.core.prompts import LLM_PROMPTS
# helper = GeminiLLMHelper()
# response = await helper.get_chat_completion_response_async(LLM_PROMPTS["SKILLS_HARVESTING_PROMPT"], ["What is the weather like today?", "And How are you?"], temperature=0, max_tokens=4000)
# print("*******\nResponse: ", response, "\n*******\n")
# asyncio.run(main())