mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-25 00:19:18 +08:00
207 lines
7.2 KiB
C++
207 lines
7.2 KiB
C++
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* This sample implements the same algorithm as the convolutionSeparable
|
|
* CUDA Sample, but without using the shared memory at all.
|
|
* Instead, it uses textures in exactly the same way an OpenGL-based
|
|
* implementation would do.
|
|
* Refer to the "Performance" section of convolutionSeparable whitepaper.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include <cuda_runtime.h>
|
|
|
|
#include <helper_functions.h>
|
|
#include <helper_cuda.h>
|
|
|
|
#include "convolutionTexture_common.h"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Main program
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
int main(int argc, char **argv) {
|
|
float *h_Kernel, *h_Input, *h_Buffer, *h_OutputCPU, *h_OutputGPU;
|
|
|
|
cudaArray *a_Src;
|
|
cudaTextureObject_t texSrc;
|
|
cudaChannelFormatDesc floatTex = cudaCreateChannelDesc<float>();
|
|
|
|
float *d_Output;
|
|
|
|
float gpuTime;
|
|
|
|
StopWatchInterface *hTimer = NULL;
|
|
|
|
const int imageW = 3072;
|
|
const int imageH = 3072 / 2;
|
|
const unsigned int iterations = 10;
|
|
|
|
printf("[%s] - Starting...\n", argv[0]);
|
|
|
|
// use command-line specified CUDA device, otherwise use device with highest
|
|
// Gflops/s
|
|
findCudaDevice(argc, (const char **)argv);
|
|
|
|
sdkCreateTimer(&hTimer);
|
|
|
|
printf("Initializing data...\n");
|
|
h_Kernel = (float *)malloc(KERNEL_LENGTH * sizeof(float));
|
|
h_Input = (float *)malloc(imageW * imageH * sizeof(float));
|
|
h_Buffer = (float *)malloc(imageW * imageH * sizeof(float));
|
|
h_OutputCPU = (float *)malloc(imageW * imageH * sizeof(float));
|
|
h_OutputGPU = (float *)malloc(imageW * imageH * sizeof(float));
|
|
checkCudaErrors(cudaMallocArray(&a_Src, &floatTex, imageW, imageH));
|
|
checkCudaErrors(
|
|
cudaMalloc((void **)&d_Output, imageW * imageH * sizeof(float)));
|
|
|
|
cudaResourceDesc texRes;
|
|
memset(&texRes, 0, sizeof(cudaResourceDesc));
|
|
|
|
texRes.resType = cudaResourceTypeArray;
|
|
texRes.res.array.array = a_Src;
|
|
|
|
cudaTextureDesc texDescr;
|
|
memset(&texDescr, 0, sizeof(cudaTextureDesc));
|
|
|
|
texDescr.normalizedCoords = false;
|
|
texDescr.filterMode = cudaFilterModeLinear;
|
|
texDescr.addressMode[0] = cudaAddressModeWrap;
|
|
texDescr.addressMode[1] = cudaAddressModeWrap;
|
|
texDescr.readMode = cudaReadModeElementType;
|
|
|
|
checkCudaErrors(cudaCreateTextureObject(&texSrc, &texRes, &texDescr, NULL));
|
|
|
|
srand(2009);
|
|
|
|
for (unsigned int i = 0; i < KERNEL_LENGTH; i++) {
|
|
h_Kernel[i] = (float)(rand() % 16);
|
|
}
|
|
|
|
for (unsigned int i = 0; i < imageW * imageH; i++) {
|
|
h_Input[i] = (float)(rand() % 16);
|
|
}
|
|
|
|
setConvolutionKernel(h_Kernel);
|
|
checkCudaErrors(cudaMemcpyToArray(a_Src, 0, 0, h_Input,
|
|
imageW * imageH * sizeof(float),
|
|
cudaMemcpyHostToDevice));
|
|
|
|
printf("Running GPU rows convolution (%u identical iterations)...\n",
|
|
iterations);
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
sdkResetTimer(&hTimer);
|
|
sdkStartTimer(&hTimer);
|
|
|
|
for (unsigned int i = 0; i < iterations; i++) {
|
|
convolutionRowsGPU(d_Output, a_Src, imageW, imageH, texSrc);
|
|
}
|
|
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
sdkStopTimer(&hTimer);
|
|
gpuTime = sdkGetTimerValue(&hTimer) / (float)iterations;
|
|
printf("Average convolutionRowsGPU() time: %f msecs; //%f Mpix/s\n", gpuTime,
|
|
imageW * imageH * 1e-6 / (0.001 * gpuTime));
|
|
|
|
// While CUDA kernels can't write to textures directly, this copy is
|
|
// inevitable
|
|
printf("Copying convolutionRowGPU() output back to the texture...\n");
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
sdkResetTimer(&hTimer);
|
|
sdkStartTimer(&hTimer);
|
|
checkCudaErrors(cudaMemcpyToArray(a_Src, 0, 0, d_Output,
|
|
imageW * imageH * sizeof(float),
|
|
cudaMemcpyDeviceToDevice));
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
sdkStopTimer(&hTimer);
|
|
gpuTime = sdkGetTimerValue(&hTimer);
|
|
printf("cudaMemcpyToArray() time: %f msecs; //%f Mpix/s\n", gpuTime,
|
|
imageW * imageH * 1e-6 / (0.001 * gpuTime));
|
|
|
|
printf("Running GPU columns convolution (%i iterations)\n", iterations);
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
sdkResetTimer(&hTimer);
|
|
sdkStartTimer(&hTimer);
|
|
|
|
for (int i = 0; i < iterations; i++) {
|
|
convolutionColumnsGPU(d_Output, a_Src, imageW, imageH, texSrc);
|
|
}
|
|
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
sdkStopTimer(&hTimer);
|
|
gpuTime = sdkGetTimerValue(&hTimer) / (float)iterations;
|
|
printf("Average convolutionColumnsGPU() time: %f msecs; //%f Mpix/s\n",
|
|
gpuTime, imageW * imageH * 1e-6 / (0.001 * gpuTime));
|
|
|
|
printf("Reading back GPU results...\n");
|
|
checkCudaErrors(cudaMemcpy(h_OutputGPU, d_Output,
|
|
imageW * imageH * sizeof(float),
|
|
cudaMemcpyDeviceToHost));
|
|
|
|
printf("Checking the results...\n");
|
|
printf("...running convolutionRowsCPU()\n");
|
|
convolutionRowsCPU(h_Buffer, h_Input, h_Kernel, imageW, imageH,
|
|
KERNEL_RADIUS);
|
|
|
|
printf("...running convolutionColumnsCPU()\n");
|
|
convolutionColumnsCPU(h_OutputCPU, h_Buffer, h_Kernel, imageW, imageH,
|
|
KERNEL_RADIUS);
|
|
|
|
double delta = 0;
|
|
double sum = 0;
|
|
|
|
for (unsigned int i = 0; i < imageW * imageH; i++) {
|
|
sum += h_OutputCPU[i] * h_OutputCPU[i];
|
|
delta +=
|
|
(h_OutputGPU[i] - h_OutputCPU[i]) * (h_OutputGPU[i] - h_OutputCPU[i]);
|
|
}
|
|
|
|
double L2norm = sqrt(delta / sum);
|
|
printf("Relative L2 norm: %E\n", L2norm);
|
|
printf("Shutting down...\n");
|
|
|
|
checkCudaErrors(cudaFree(d_Output));
|
|
checkCudaErrors(cudaFreeArray(a_Src));
|
|
free(h_OutputGPU);
|
|
free(h_Buffer);
|
|
free(h_Input);
|
|
free(h_Kernel);
|
|
|
|
sdkDeleteTimer(&hTimer);
|
|
|
|
if (L2norm > 1e-6) {
|
|
printf("Test failed!\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
printf("Test passed\n");
|
|
exit(EXIT_SUCCESS);
|
|
}
|