mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 22:15:55 +08:00
103 lines
3.7 KiB
Plaintext
103 lines
3.7 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* Simple example demonstrating how to use MPI with CUDA
|
|
*
|
|
* Generate some random numbers on one node.
|
|
* Dispatch them to all nodes.
|
|
* Compute their square root on each node's GPU.
|
|
* Compute the average of the results using MPI.
|
|
*
|
|
* simpleMPI.cu: GPU part, compiled with nvcc
|
|
*/
|
|
|
|
#include <iostream>
|
|
using std::cerr;
|
|
using std::endl;
|
|
|
|
#include "simpleMPI.h"
|
|
|
|
// Error handling macro
|
|
#define CUDA_CHECK(call) \
|
|
if ((call) != cudaSuccess) { \
|
|
cudaError_t err = cudaGetLastError(); \
|
|
cerr << "CUDA error calling \"" #call "\", code is " << err << endl; \
|
|
my_abort(err); \
|
|
}
|
|
|
|
// Device code
|
|
// Very simple GPU Kernel that computes square roots of input numbers
|
|
__global__ void simpleMPIKernel(float *input, float *output) {
|
|
int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
output[tid] = sqrt(input[tid]);
|
|
}
|
|
|
|
// Initialize an array with random data (between 0 and 1)
|
|
void initData(float *data, int dataSize) {
|
|
for (int i = 0; i < dataSize; i++) {
|
|
data[i] = (float)rand() / RAND_MAX;
|
|
}
|
|
}
|
|
|
|
// CUDA computation on each node
|
|
// No MPI here, only CUDA
|
|
void computeGPU(float *hostData, int blockSize, int gridSize) {
|
|
int dataSize = blockSize * gridSize;
|
|
|
|
// Allocate data on GPU memory
|
|
float *deviceInputData = NULL;
|
|
CUDA_CHECK(cudaMalloc((void **)&deviceInputData, dataSize * sizeof(float)));
|
|
|
|
float *deviceOutputData = NULL;
|
|
CUDA_CHECK(cudaMalloc((void **)&deviceOutputData, dataSize * sizeof(float)));
|
|
|
|
// Copy to GPU memory
|
|
CUDA_CHECK(cudaMemcpy(deviceInputData, hostData, dataSize * sizeof(float),
|
|
cudaMemcpyHostToDevice));
|
|
|
|
// Run kernel
|
|
simpleMPIKernel<<<gridSize, blockSize>>>(deviceInputData, deviceOutputData);
|
|
|
|
// Copy data back to CPU memory
|
|
CUDA_CHECK(cudaMemcpy(hostData, deviceOutputData, dataSize * sizeof(float),
|
|
cudaMemcpyDeviceToHost));
|
|
|
|
// Free GPU memory
|
|
CUDA_CHECK(cudaFree(deviceInputData));
|
|
CUDA_CHECK(cudaFree(deviceOutputData));
|
|
}
|
|
|
|
float sum(float *data, int size) {
|
|
float accum = 0.f;
|
|
|
|
for (int i = 0; i < size; i++) {
|
|
accum += data[i];
|
|
}
|
|
|
|
return accum;
|
|
}
|