mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 22:25:49 +08:00
183 lines
7.4 KiB
Plaintext
183 lines
7.4 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* Computation of eigenvalues of a small symmetric, tridiagonal matrix */
|
|
|
|
// includes, system
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include <float.h>
|
|
|
|
// includes, project
|
|
#include "helper_functions.h"
|
|
#include "helper_cuda.h"
|
|
#include "config.h"
|
|
#include "structs.h"
|
|
#include "matlab.h"
|
|
|
|
// includes, kernels
|
|
#include "bisect_kernel_small.cuh"
|
|
|
|
// includes, file
|
|
#include "bisect_small.cuh"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//! Determine eigenvalues for matrices smaller than MAX_SMALL_MATRIX
|
|
//! @param TimingIterations number of iterations for timing
|
|
//! @param input handles to input data of kernel
|
|
//! @param result handles to result of kernel
|
|
//! @param mat_size matrix size
|
|
//! @param lg lower limit of Gerschgorin interval
|
|
//! @param ug upper limit of Gerschgorin interval
|
|
//! @param precision desired precision of eigenvalues
|
|
//! @param iterations number of iterations for timing
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void computeEigenvaluesSmallMatrix(const InputData &input,
|
|
ResultDataSmall &result,
|
|
const unsigned int mat_size, const float lg,
|
|
const float ug, const float precision,
|
|
const unsigned int iterations) {
|
|
StopWatchInterface *timer = NULL;
|
|
sdkCreateTimer(&timer);
|
|
sdkStartTimer(&timer);
|
|
|
|
for (unsigned int i = 0; i < iterations; ++i) {
|
|
dim3 blocks(1, 1, 1);
|
|
dim3 threads(MAX_THREADS_BLOCK_SMALL_MATRIX, 1, 1);
|
|
|
|
bisectKernel<<<blocks, threads>>>(input.g_a, input.g_b, mat_size,
|
|
result.g_left, result.g_right,
|
|
result.g_left_count, result.g_right_count,
|
|
lg, ug, 0, mat_size, precision);
|
|
}
|
|
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
sdkStopTimer(&timer);
|
|
getLastCudaError("Kernel launch failed");
|
|
printf("Average time: %f ms (%i iterations)\n",
|
|
sdkGetTimerValue(&timer) / (float)iterations, iterations);
|
|
|
|
sdkDeleteTimer(&timer);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//! Initialize variables and memory for the result for small matrices
|
|
//! @param result handles to the necessary memory
|
|
//! @param mat_size matrix_size
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void initResultSmallMatrix(ResultDataSmall &result,
|
|
const unsigned int mat_size) {
|
|
result.mat_size_f = sizeof(float) * mat_size;
|
|
result.mat_size_ui = sizeof(unsigned int) * mat_size;
|
|
|
|
result.eigenvalues = (float *)malloc(result.mat_size_f);
|
|
|
|
// helper variables
|
|
result.zero_f = (float *)malloc(result.mat_size_f);
|
|
result.zero_ui = (unsigned int *)malloc(result.mat_size_ui);
|
|
|
|
for (unsigned int i = 0; i < mat_size; ++i) {
|
|
result.zero_f[i] = 0.0f;
|
|
result.zero_ui[i] = 0;
|
|
|
|
result.eigenvalues[i] = 0.0f;
|
|
}
|
|
|
|
checkCudaErrors(cudaMalloc((void **)&result.g_left, result.mat_size_f));
|
|
checkCudaErrors(cudaMalloc((void **)&result.g_right, result.mat_size_f));
|
|
|
|
checkCudaErrors(
|
|
cudaMalloc((void **)&result.g_left_count, result.mat_size_ui));
|
|
checkCudaErrors(
|
|
cudaMalloc((void **)&result.g_right_count, result.mat_size_ui));
|
|
|
|
// initialize result memory
|
|
checkCudaErrors(cudaMemcpy(result.g_left, result.zero_f, result.mat_size_f,
|
|
cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemcpy(result.g_right, result.zero_f, result.mat_size_f,
|
|
cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemcpy(result.g_right_count, result.zero_ui,
|
|
result.mat_size_ui, cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemcpy(result.g_left_count, result.zero_ui,
|
|
result.mat_size_ui, cudaMemcpyHostToDevice));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//! Cleanup memory and variables for result for small matrices
|
|
//! @param result handle to variables
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void cleanupResultSmallMatrix(ResultDataSmall &result) {
|
|
freePtr(result.eigenvalues);
|
|
freePtr(result.zero_f);
|
|
freePtr(result.zero_ui);
|
|
|
|
checkCudaErrors(cudaFree(result.g_left));
|
|
checkCudaErrors(cudaFree(result.g_right));
|
|
checkCudaErrors(cudaFree(result.g_left_count));
|
|
checkCudaErrors(cudaFree(result.g_right_count));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//! Process the result obtained on the device, that is transfer to host and
|
|
//! perform basic sanity checking
|
|
//! @param input handles to input data
|
|
//! @param result handles to result data
|
|
//! @param mat_size matrix size
|
|
//! @param filename output filename
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void processResultSmallMatrix(const InputData &input,
|
|
const ResultDataSmall &result,
|
|
const unsigned int mat_size,
|
|
const char *filename) {
|
|
const unsigned int mat_size_f = sizeof(float) * mat_size;
|
|
const unsigned int mat_size_ui = sizeof(unsigned int) * mat_size;
|
|
|
|
// copy data back to host
|
|
float *left = (float *)malloc(mat_size_f);
|
|
unsigned int *left_count = (unsigned int *)malloc(mat_size_ui);
|
|
|
|
checkCudaErrors(
|
|
cudaMemcpy(left, result.g_left, mat_size_f, cudaMemcpyDeviceToHost));
|
|
checkCudaErrors(cudaMemcpy(left_count, result.g_left_count, mat_size_ui,
|
|
cudaMemcpyDeviceToHost));
|
|
|
|
float *eigenvalues = (float *)malloc(mat_size_f);
|
|
|
|
for (unsigned int i = 0; i < mat_size; ++i) {
|
|
eigenvalues[left_count[i]] = left[i];
|
|
}
|
|
|
|
// save result in matlab format
|
|
writeTridiagSymMatlab(filename, input.a, input.b + 1, eigenvalues, mat_size);
|
|
|
|
freePtr(left);
|
|
freePtr(left_count);
|
|
freePtr(eigenvalues);
|
|
}
|