mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-28 21:29:15 +08:00
1925 lines
70 KiB
C++
1925 lines
70 KiB
C++
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* This file contains basic cross-platform setup paths in working with Vulkan
|
|
* and rendering window. It is largely based off of tutorials provided here:
|
|
* https://vulkan-tutorial.com/
|
|
*/
|
|
|
|
#include <stdexcept>
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <algorithm>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <set>
|
|
#include <string.h>
|
|
|
|
#include "VulkanBaseApp.h"
|
|
|
|
#define GLFW_INCLUDE_VULKAN
|
|
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
|
|
#include <GLFW/glfw3.h>
|
|
|
|
#ifdef _WIN64
|
|
#include <VersionHelpers.h>
|
|
#include <dxgi1_2.h>
|
|
#include <aclapi.h>
|
|
#endif /* _WIN64 */
|
|
|
|
#ifndef countof
|
|
#define countof(x) (sizeof(x) / sizeof(*(x)))
|
|
#endif
|
|
|
|
static const char *validationLayers[] = {"VK_LAYER_KHRONOS_validation"};
|
|
static const size_t MAX_FRAMES_IN_FLIGHT = 5;
|
|
|
|
void VulkanBaseApp::resizeCallback(GLFWwindow *window, int width, int height) {
|
|
VulkanBaseApp *app =
|
|
reinterpret_cast<VulkanBaseApp *>(glfwGetWindowUserPointer(window));
|
|
app->m_framebufferResized = true;
|
|
}
|
|
|
|
static VKAPI_ATTR VkBool32 VKAPI_CALL
|
|
debugCallback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,
|
|
VkDebugUtilsMessageTypeFlagsEXT messageType,
|
|
const VkDebugUtilsMessengerCallbackDataEXT *pCallbackData,
|
|
void *pUserData) {
|
|
std::cerr << "validation layer: " << pCallbackData->pMessage << std::endl;
|
|
|
|
return VK_FALSE;
|
|
}
|
|
|
|
VulkanBaseApp::VulkanBaseApp(const std::string &appName, bool enableValidation)
|
|
: m_appName(appName),
|
|
m_enableValidation(enableValidation),
|
|
m_instance(VK_NULL_HANDLE),
|
|
m_window(nullptr),
|
|
m_debugMessenger(VK_NULL_HANDLE),
|
|
m_surface(VK_NULL_HANDLE),
|
|
m_physicalDevice(VK_NULL_HANDLE),
|
|
m_device(VK_NULL_HANDLE),
|
|
m_graphicsQueue(VK_NULL_HANDLE),
|
|
m_presentQueue(VK_NULL_HANDLE),
|
|
m_swapChain(VK_NULL_HANDLE),
|
|
m_vkDeviceUUID(),
|
|
m_swapChainImages(),
|
|
m_swapChainFormat(),
|
|
m_swapChainExtent(),
|
|
m_swapChainImageViews(),
|
|
m_shaderFiles(),
|
|
m_renderPass(),
|
|
m_pipelineLayout(VK_NULL_HANDLE),
|
|
m_graphicsPipeline(VK_NULL_HANDLE),
|
|
m_swapChainFramebuffers(),
|
|
m_commandPool(VK_NULL_HANDLE),
|
|
m_commandBuffers(),
|
|
m_imageAvailableSemaphores(),
|
|
m_renderFinishedSemaphores(),
|
|
m_inFlightFences(),
|
|
m_uniformBuffers(),
|
|
m_uniformMemory(),
|
|
m_descriptorSetLayout(VK_NULL_HANDLE),
|
|
m_descriptorPool(VK_NULL_HANDLE),
|
|
m_descriptorSets(),
|
|
m_depthImage(VK_NULL_HANDLE),
|
|
m_depthImageMemory(VK_NULL_HANDLE),
|
|
m_depthImageView(VK_NULL_HANDLE),
|
|
m_currentFrame(0),
|
|
m_framebufferResized(false) {}
|
|
|
|
VkExternalSemaphoreHandleTypeFlagBits
|
|
VulkanBaseApp::getDefaultSemaphoreHandleType() {
|
|
#ifdef _WIN64
|
|
return IsWindows8OrGreater()
|
|
? VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT
|
|
: VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT;
|
|
#else
|
|
return VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT;
|
|
#endif /* _WIN64 */
|
|
}
|
|
|
|
VkExternalMemoryHandleTypeFlagBits VulkanBaseApp::getDefaultMemHandleType() {
|
|
#ifdef _WIN64
|
|
return IsWindows8Point1OrGreater()
|
|
? VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT
|
|
: VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT;
|
|
#else
|
|
return VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT;
|
|
#endif /* _WIN64 */
|
|
}
|
|
|
|
VulkanBaseApp::~VulkanBaseApp() {
|
|
cleanupSwapChain();
|
|
|
|
if (m_descriptorSetLayout != VK_NULL_HANDLE) {
|
|
vkDestroyDescriptorSetLayout(m_device, m_descriptorSetLayout, nullptr);
|
|
}
|
|
|
|
#ifdef _VK_TIMELINE_SEMAPHORE
|
|
if (m_vkPresentationSemaphore != VK_NULL_HANDLE) {
|
|
vkDestroySemaphore(m_device, m_vkPresentationSemaphore, nullptr);
|
|
}
|
|
#endif /* _VK_TIMELINE_SEMAPHORE */
|
|
|
|
for (size_t i = 0; i < m_renderFinishedSemaphores.size(); i++) {
|
|
vkDestroySemaphore(m_device, m_renderFinishedSemaphores[i], nullptr);
|
|
vkDestroySemaphore(m_device, m_imageAvailableSemaphores[i], nullptr);
|
|
vkDestroyFence(m_device, m_inFlightFences[i], nullptr);
|
|
}
|
|
if (m_commandPool != VK_NULL_HANDLE) {
|
|
vkDestroyCommandPool(m_device, m_commandPool, nullptr);
|
|
}
|
|
|
|
if (m_device != VK_NULL_HANDLE) {
|
|
vkDestroyDevice(m_device, nullptr);
|
|
}
|
|
|
|
if (m_enableValidation) {
|
|
PFN_vkDestroyDebugUtilsMessengerEXT func =
|
|
(PFN_vkDestroyDebugUtilsMessengerEXT)vkGetInstanceProcAddr(
|
|
m_instance, "vkDestroyDebugUtilsMessengerEXT");
|
|
if (func != nullptr) {
|
|
func(m_instance, m_debugMessenger, nullptr);
|
|
}
|
|
}
|
|
|
|
if (m_surface != VK_NULL_HANDLE) {
|
|
vkDestroySurfaceKHR(m_instance, m_surface, nullptr);
|
|
}
|
|
|
|
if (m_instance != VK_NULL_HANDLE) {
|
|
vkDestroyInstance(m_instance, nullptr);
|
|
}
|
|
|
|
if (m_window) {
|
|
glfwDestroyWindow(m_window);
|
|
}
|
|
|
|
glfwTerminate();
|
|
}
|
|
|
|
void VulkanBaseApp::init() {
|
|
initWindow();
|
|
initVulkan();
|
|
}
|
|
|
|
VkCommandBuffer VulkanBaseApp::beginSingleTimeCommands() {
|
|
VkCommandBufferAllocateInfo allocInfo = {};
|
|
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
|
|
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
|
|
allocInfo.commandPool = m_commandPool;
|
|
allocInfo.commandBufferCount = 1;
|
|
|
|
VkCommandBuffer commandBuffer;
|
|
vkAllocateCommandBuffers(m_device, &allocInfo, &commandBuffer);
|
|
|
|
VkCommandBufferBeginInfo beginInfo = {};
|
|
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
|
|
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
|
|
|
|
vkBeginCommandBuffer(commandBuffer, &beginInfo);
|
|
|
|
return commandBuffer;
|
|
}
|
|
|
|
void VulkanBaseApp::endSingleTimeCommands(VkCommandBuffer commandBuffer) {
|
|
vkEndCommandBuffer(commandBuffer);
|
|
|
|
VkSubmitInfo submitInfo = {};
|
|
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &commandBuffer;
|
|
|
|
vkQueueSubmit(m_graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE);
|
|
vkQueueWaitIdle(m_graphicsQueue);
|
|
|
|
vkFreeCommandBuffers(m_device, m_commandPool, 1, &commandBuffer);
|
|
}
|
|
|
|
void VulkanBaseApp::initWindow() {
|
|
glfwInit();
|
|
|
|
glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
|
|
glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);
|
|
|
|
m_window = glfwCreateWindow(1280, 800, m_appName.c_str(), nullptr, nullptr);
|
|
glfwSetWindowUserPointer(m_window, this);
|
|
glfwSetFramebufferSizeCallback(m_window, resizeCallback);
|
|
}
|
|
|
|
std::vector<const char *> VulkanBaseApp::getRequiredExtensions() const {
|
|
return std::vector<const char *>();
|
|
}
|
|
|
|
std::vector<const char *> VulkanBaseApp::getRequiredDeviceExtensions() const {
|
|
return std::vector<const char *>();
|
|
}
|
|
|
|
void VulkanBaseApp::initVulkan() {
|
|
createInstance();
|
|
createSurface();
|
|
createDevice();
|
|
createSwapChain();
|
|
createImageViews();
|
|
createRenderPass();
|
|
createDescriptorSetLayout();
|
|
createGraphicsPipeline();
|
|
createCommandPool();
|
|
createDepthResources();
|
|
createFramebuffers();
|
|
initVulkanApp();
|
|
createUniformBuffers();
|
|
createDescriptorPool();
|
|
createDescriptorSets();
|
|
createCommandBuffers();
|
|
createSyncObjects();
|
|
}
|
|
|
|
#ifdef _WIN64
|
|
class WindowsSecurityAttributes {
|
|
protected:
|
|
SECURITY_ATTRIBUTES m_winSecurityAttributes;
|
|
PSECURITY_DESCRIPTOR m_winPSecurityDescriptor;
|
|
|
|
public:
|
|
WindowsSecurityAttributes();
|
|
SECURITY_ATTRIBUTES *operator&();
|
|
~WindowsSecurityAttributes();
|
|
};
|
|
|
|
WindowsSecurityAttributes::WindowsSecurityAttributes() {
|
|
m_winPSecurityDescriptor = (PSECURITY_DESCRIPTOR)calloc(
|
|
1, SECURITY_DESCRIPTOR_MIN_LENGTH + 2 * sizeof(void **));
|
|
if (!m_winPSecurityDescriptor) {
|
|
throw std::runtime_error(
|
|
"Failed to allocate memory for security descriptor");
|
|
}
|
|
|
|
PSID *ppSID = (PSID *)((PBYTE)m_winPSecurityDescriptor +
|
|
SECURITY_DESCRIPTOR_MIN_LENGTH);
|
|
PACL *ppACL = (PACL *)((PBYTE)ppSID + sizeof(PSID *));
|
|
|
|
InitializeSecurityDescriptor(m_winPSecurityDescriptor,
|
|
SECURITY_DESCRIPTOR_REVISION);
|
|
|
|
SID_IDENTIFIER_AUTHORITY sidIdentifierAuthority =
|
|
SECURITY_WORLD_SID_AUTHORITY;
|
|
AllocateAndInitializeSid(&sidIdentifierAuthority, 1, SECURITY_WORLD_RID, 0, 0,
|
|
0, 0, 0, 0, 0, ppSID);
|
|
|
|
EXPLICIT_ACCESS explicitAccess;
|
|
ZeroMemory(&explicitAccess, sizeof(EXPLICIT_ACCESS));
|
|
explicitAccess.grfAccessPermissions =
|
|
STANDARD_RIGHTS_ALL | SPECIFIC_RIGHTS_ALL;
|
|
explicitAccess.grfAccessMode = SET_ACCESS;
|
|
explicitAccess.grfInheritance = INHERIT_ONLY;
|
|
explicitAccess.Trustee.TrusteeForm = TRUSTEE_IS_SID;
|
|
explicitAccess.Trustee.TrusteeType = TRUSTEE_IS_WELL_KNOWN_GROUP;
|
|
explicitAccess.Trustee.ptstrName = (LPTSTR)*ppSID;
|
|
|
|
SetEntriesInAcl(1, &explicitAccess, NULL, ppACL);
|
|
|
|
SetSecurityDescriptorDacl(m_winPSecurityDescriptor, TRUE, *ppACL, FALSE);
|
|
|
|
m_winSecurityAttributes.nLength = sizeof(m_winSecurityAttributes);
|
|
m_winSecurityAttributes.lpSecurityDescriptor = m_winPSecurityDescriptor;
|
|
m_winSecurityAttributes.bInheritHandle = TRUE;
|
|
}
|
|
|
|
SECURITY_ATTRIBUTES *WindowsSecurityAttributes::operator&() {
|
|
return &m_winSecurityAttributes;
|
|
}
|
|
|
|
WindowsSecurityAttributes::~WindowsSecurityAttributes() {
|
|
PSID *ppSID = (PSID *)((PBYTE)m_winPSecurityDescriptor +
|
|
SECURITY_DESCRIPTOR_MIN_LENGTH);
|
|
PACL *ppACL = (PACL *)((PBYTE)ppSID + sizeof(PSID *));
|
|
|
|
if (*ppSID) {
|
|
FreeSid(*ppSID);
|
|
}
|
|
if (*ppACL) {
|
|
LocalFree(*ppACL);
|
|
}
|
|
free(m_winPSecurityDescriptor);
|
|
}
|
|
#endif /* _WIN64 */
|
|
|
|
static VkFormat findSupportedFormat(VkPhysicalDevice physicalDevice,
|
|
const std::vector<VkFormat> &candidates,
|
|
VkImageTiling tiling,
|
|
VkFormatFeatureFlags features) {
|
|
for (VkFormat format : candidates) {
|
|
VkFormatProperties props;
|
|
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &props);
|
|
if (tiling == VK_IMAGE_TILING_LINEAR &&
|
|
(props.linearTilingFeatures & features) == features) {
|
|
return format;
|
|
} else if (tiling == VK_IMAGE_TILING_OPTIMAL &&
|
|
(props.optimalTilingFeatures & features) == features) {
|
|
return format;
|
|
}
|
|
}
|
|
throw std::runtime_error("Failed to find supported format!");
|
|
}
|
|
|
|
static uint32_t findMemoryType(VkPhysicalDevice physicalDevice,
|
|
uint32_t typeFilter,
|
|
VkMemoryPropertyFlags properties) {
|
|
VkPhysicalDeviceMemoryProperties memProperties;
|
|
vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memProperties);
|
|
for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) {
|
|
if (typeFilter & (1 << i) &&
|
|
(memProperties.memoryTypes[i].propertyFlags & properties) ==
|
|
properties) {
|
|
return i;
|
|
}
|
|
}
|
|
return ~0;
|
|
}
|
|
|
|
static bool supportsValidationLayers() {
|
|
std::vector<VkLayerProperties> availableLayers;
|
|
uint32_t layerCount;
|
|
|
|
vkEnumerateInstanceLayerProperties(&layerCount, nullptr);
|
|
availableLayers.resize(layerCount);
|
|
vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data());
|
|
|
|
for (const char *layerName : validationLayers) {
|
|
bool layerFound = false;
|
|
|
|
for (const auto &layerProperties : availableLayers) {
|
|
if (strcmp(layerName, layerProperties.layerName) == 0) {
|
|
layerFound = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!layerFound) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void VulkanBaseApp::createInstance() {
|
|
if (m_enableValidation && !supportsValidationLayers()) {
|
|
throw std::runtime_error("Validation requested, but not supported!");
|
|
}
|
|
|
|
VkApplicationInfo appInfo = {};
|
|
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
|
|
appInfo.pApplicationName = m_appName.c_str();
|
|
appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
|
|
appInfo.pEngineName = "No Engine";
|
|
appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
|
|
appInfo.apiVersion = VK_API_VERSION_1_2;
|
|
|
|
VkInstanceCreateInfo createInfo = {};
|
|
createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
|
|
createInfo.pApplicationInfo = &appInfo;
|
|
|
|
std::vector<const char *> exts = getRequiredExtensions();
|
|
|
|
{
|
|
uint32_t glfwExtensionCount = 0;
|
|
const char **glfwExtensions;
|
|
|
|
glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);
|
|
|
|
exts.insert(exts.begin(), glfwExtensions,
|
|
glfwExtensions + glfwExtensionCount);
|
|
|
|
if (m_enableValidation) {
|
|
exts.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
|
|
}
|
|
}
|
|
|
|
createInfo.enabledExtensionCount = static_cast<uint32_t>(exts.size());
|
|
createInfo.ppEnabledExtensionNames = exts.data();
|
|
VkDebugUtilsMessengerCreateInfoEXT debugCreateInfo = {};
|
|
if (m_enableValidation) {
|
|
createInfo.enabledLayerCount =
|
|
static_cast<uint32_t>(countof(validationLayers));
|
|
createInfo.ppEnabledLayerNames = validationLayers;
|
|
|
|
debugCreateInfo.sType =
|
|
VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
|
|
debugCreateInfo.messageSeverity =
|
|
VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT |
|
|
VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT |
|
|
VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
|
|
debugCreateInfo.messageType =
|
|
VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT |
|
|
VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT |
|
|
VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
|
|
debugCreateInfo.pfnUserCallback = debugCallback;
|
|
|
|
createInfo.pNext = &debugCreateInfo;
|
|
} else {
|
|
createInfo.enabledLayerCount = 0;
|
|
createInfo.pNext = nullptr;
|
|
}
|
|
|
|
if (vkCreateInstance(&createInfo, nullptr, &m_instance) != VK_SUCCESS) {
|
|
throw std::runtime_error("Failed to create Vulkan instance!");
|
|
}
|
|
|
|
if (m_enableValidation) {
|
|
PFN_vkCreateDebugUtilsMessengerEXT func =
|
|
(PFN_vkCreateDebugUtilsMessengerEXT)vkGetInstanceProcAddr(
|
|
m_instance, "vkCreateDebugUtilsMessengerEXT");
|
|
if (func == nullptr ||
|
|
func(m_instance, &debugCreateInfo, nullptr, &m_debugMessenger) !=
|
|
VK_SUCCESS) {
|
|
throw std::runtime_error("Failed to set up debug messenger!");
|
|
}
|
|
}
|
|
}
|
|
|
|
void VulkanBaseApp::createSurface() {
|
|
if (glfwCreateWindowSurface(m_instance, m_window, nullptr, &m_surface) !=
|
|
VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create window surface!");
|
|
}
|
|
}
|
|
|
|
static bool findGraphicsQueueIndicies(VkPhysicalDevice device,
|
|
VkSurfaceKHR surface,
|
|
uint32_t &graphicsFamily,
|
|
uint32_t &presentFamily) {
|
|
uint32_t queueFamilyCount = 0;
|
|
|
|
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr);
|
|
|
|
std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
|
|
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount,
|
|
queueFamilies.data());
|
|
|
|
graphicsFamily = presentFamily = ~0;
|
|
|
|
for (uint32_t i = 0; i < queueFamilyCount; i++) {
|
|
if (queueFamilies[i].queueCount > 0) {
|
|
if (graphicsFamily == ~0 &&
|
|
queueFamilies[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) {
|
|
graphicsFamily = i;
|
|
}
|
|
uint32_t presentSupport = 0;
|
|
vkGetPhysicalDeviceSurfaceSupportKHR(device, i, surface, &presentSupport);
|
|
if (presentFamily == ~0 && presentSupport) {
|
|
presentFamily = i;
|
|
}
|
|
if (presentFamily != ~0 && graphicsFamily != ~0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return graphicsFamily != ~0 && presentFamily != ~0;
|
|
}
|
|
|
|
static bool hasAllExtensions(
|
|
VkPhysicalDevice device,
|
|
const std::vector<const char *> &deviceExtensions) {
|
|
uint32_t extensionCount;
|
|
vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount,
|
|
nullptr);
|
|
std::vector<VkExtensionProperties> availableExtensions(extensionCount);
|
|
vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount,
|
|
availableExtensions.data());
|
|
|
|
std::set<std::string> requiredExtensions(deviceExtensions.begin(),
|
|
deviceExtensions.end());
|
|
|
|
for (const auto &extension : availableExtensions) {
|
|
requiredExtensions.erase(extension.extensionName);
|
|
}
|
|
|
|
return requiredExtensions.empty();
|
|
}
|
|
|
|
static void getSwapChainProperties(
|
|
VkPhysicalDevice device, VkSurfaceKHR surface,
|
|
VkSurfaceCapabilitiesKHR &capabilities,
|
|
std::vector<VkSurfaceFormatKHR> &formats,
|
|
std::vector<VkPresentModeKHR> &presentModes) {
|
|
vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, surface, &capabilities);
|
|
uint32_t formatCount;
|
|
vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, nullptr);
|
|
if (formatCount != 0) {
|
|
formats.resize(formatCount);
|
|
vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount,
|
|
formats.data());
|
|
}
|
|
uint32_t presentModeCount;
|
|
vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount,
|
|
nullptr);
|
|
if (presentModeCount != 0) {
|
|
presentModes.resize(presentModeCount);
|
|
vkGetPhysicalDeviceSurfacePresentModesKHR(
|
|
device, surface, &presentModeCount, presentModes.data());
|
|
}
|
|
}
|
|
|
|
bool VulkanBaseApp::isSuitableDevice(VkPhysicalDevice dev) const {
|
|
uint32_t graphicsQueueIndex, presentQueueIndex;
|
|
std::vector<const char *> deviceExtensions = getRequiredDeviceExtensions();
|
|
VkSurfaceCapabilitiesKHR caps;
|
|
std::vector<VkSurfaceFormatKHR> formats;
|
|
std::vector<VkPresentModeKHR> presentModes;
|
|
deviceExtensions.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME);
|
|
getSwapChainProperties(dev, m_surface, caps, formats, presentModes);
|
|
return hasAllExtensions(dev, deviceExtensions) && !formats.empty() &&
|
|
!presentModes.empty() &&
|
|
findGraphicsQueueIndicies(dev, m_surface, graphicsQueueIndex,
|
|
presentQueueIndex);
|
|
}
|
|
|
|
void VulkanBaseApp::createDevice() {
|
|
{
|
|
uint32_t deviceCount = 0;
|
|
vkEnumeratePhysicalDevices(m_instance, &deviceCount, nullptr);
|
|
if (deviceCount == 0) {
|
|
throw std::runtime_error("Failed to find Vulkan capable GPUs!");
|
|
}
|
|
std::vector<VkPhysicalDevice> phyDevs(deviceCount);
|
|
vkEnumeratePhysicalDevices(m_instance, &deviceCount, phyDevs.data());
|
|
std::vector<VkPhysicalDevice>::iterator it =
|
|
std::find_if(phyDevs.begin(), phyDevs.end(),
|
|
std::bind(&VulkanBaseApp::isSuitableDevice, this,
|
|
std::placeholders::_1));
|
|
if (it == phyDevs.end()) {
|
|
throw std::runtime_error("No suitable device found!");
|
|
}
|
|
m_physicalDevice = *it;
|
|
}
|
|
|
|
uint32_t graphicsQueueIndex, presentQueueIndex;
|
|
findGraphicsQueueIndicies(m_physicalDevice, m_surface, graphicsQueueIndex,
|
|
presentQueueIndex);
|
|
|
|
std::vector<VkDeviceQueueCreateInfo> queueCreateInfos;
|
|
std::set<uint32_t> uniqueFamilyIndices = {graphicsQueueIndex,
|
|
presentQueueIndex};
|
|
|
|
float queuePriority = 1.0f;
|
|
|
|
for (uint32_t queueFamily : uniqueFamilyIndices) {
|
|
VkDeviceQueueCreateInfo queueCreateInfo = {};
|
|
queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
|
|
queueCreateInfo.queueFamilyIndex = queueFamily;
|
|
queueCreateInfo.queueCount = 1;
|
|
queueCreateInfo.pQueuePriorities = &queuePriority;
|
|
queueCreateInfos.push_back(queueCreateInfo);
|
|
}
|
|
|
|
VkPhysicalDeviceFeatures deviceFeatures = {};
|
|
deviceFeatures.fillModeNonSolid = true;
|
|
|
|
VkDeviceCreateInfo createInfo = {};
|
|
createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
|
|
|
|
#ifdef _VK_TIMELINE_SEMAPHORE
|
|
VkPhysicalDeviceVulkan12Features vk12features = {};
|
|
vk12features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES;
|
|
vk12features.timelineSemaphore = true;
|
|
createInfo.pNext = &vk12features;
|
|
#endif
|
|
|
|
createInfo.pQueueCreateInfos = queueCreateInfos.data();
|
|
createInfo.queueCreateInfoCount =
|
|
static_cast<uint32_t>(queueCreateInfos.size());
|
|
|
|
createInfo.pEnabledFeatures = &deviceFeatures;
|
|
|
|
std::vector<const char *> deviceExtensions = getRequiredDeviceExtensions();
|
|
deviceExtensions.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME);
|
|
|
|
createInfo.enabledExtensionCount =
|
|
static_cast<uint32_t>(deviceExtensions.size());
|
|
createInfo.ppEnabledExtensionNames = deviceExtensions.data();
|
|
|
|
if (m_enableValidation) {
|
|
createInfo.enabledLayerCount =
|
|
static_cast<uint32_t>(countof(validationLayers));
|
|
createInfo.ppEnabledLayerNames = validationLayers;
|
|
} else {
|
|
createInfo.enabledLayerCount = 0;
|
|
}
|
|
|
|
if (vkCreateDevice(m_physicalDevice, &createInfo, nullptr, &m_device) !=
|
|
VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create logical device!");
|
|
}
|
|
|
|
vkGetDeviceQueue(m_device, graphicsQueueIndex, 0, &m_graphicsQueue);
|
|
vkGetDeviceQueue(m_device, presentQueueIndex, 0, &m_presentQueue);
|
|
|
|
VkPhysicalDeviceIDProperties vkPhysicalDeviceIDProperties = {};
|
|
vkPhysicalDeviceIDProperties.sType =
|
|
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES;
|
|
vkPhysicalDeviceIDProperties.pNext = NULL;
|
|
|
|
VkPhysicalDeviceProperties2 vkPhysicalDeviceProperties2 = {};
|
|
vkPhysicalDeviceProperties2.sType =
|
|
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
|
|
vkPhysicalDeviceProperties2.pNext = &vkPhysicalDeviceIDProperties;
|
|
|
|
PFN_vkGetPhysicalDeviceProperties2 fpGetPhysicalDeviceProperties2;
|
|
fpGetPhysicalDeviceProperties2 =
|
|
(PFN_vkGetPhysicalDeviceProperties2)vkGetInstanceProcAddr(
|
|
m_instance, "vkGetPhysicalDeviceProperties2");
|
|
if (fpGetPhysicalDeviceProperties2 == NULL) {
|
|
throw std::runtime_error(
|
|
"Vulkan: Proc address for \"vkGetPhysicalDeviceProperties2KHR\" not "
|
|
"found.\n");
|
|
}
|
|
|
|
fpGetPhysicalDeviceProperties2(m_physicalDevice,
|
|
&vkPhysicalDeviceProperties2);
|
|
|
|
memcpy(m_vkDeviceUUID, vkPhysicalDeviceIDProperties.deviceUUID, VK_UUID_SIZE);
|
|
}
|
|
|
|
static VkSurfaceFormatKHR chooseSwapSurfaceFormat(
|
|
const std::vector<VkSurfaceFormatKHR> &availableFormats) {
|
|
if (availableFormats.size() == 1 &&
|
|
availableFormats[0].format == VK_FORMAT_UNDEFINED) {
|
|
return {VK_FORMAT_B8G8R8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR};
|
|
}
|
|
|
|
for (const auto &availableFormat : availableFormats) {
|
|
if (availableFormat.format == VK_FORMAT_B8G8R8A8_UNORM &&
|
|
availableFormat.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) {
|
|
return availableFormat;
|
|
}
|
|
}
|
|
|
|
return availableFormats[0];
|
|
}
|
|
|
|
static VkPresentModeKHR chooseSwapPresentMode(
|
|
const std::vector<VkPresentModeKHR> &availablePresentModes) {
|
|
VkPresentModeKHR bestMode = VK_PRESENT_MODE_FIFO_KHR;
|
|
|
|
for (const auto &availablePresentMode : availablePresentModes) {
|
|
if (availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
|
|
return availablePresentMode;
|
|
} else if (availablePresentMode == VK_PRESENT_MODE_IMMEDIATE_KHR) {
|
|
bestMode = availablePresentMode;
|
|
}
|
|
}
|
|
|
|
return bestMode;
|
|
}
|
|
|
|
static VkExtent2D chooseSwapExtent(
|
|
GLFWwindow *window, const VkSurfaceCapabilitiesKHR &capabilities) {
|
|
if (capabilities.currentExtent.width !=
|
|
std::numeric_limits<uint32_t>::max()) {
|
|
return capabilities.currentExtent;
|
|
} else {
|
|
int width, height;
|
|
glfwGetFramebufferSize(window, &width, &height);
|
|
VkExtent2D actualExtent = {static_cast<uint32_t>(width),
|
|
static_cast<uint32_t>(height)};
|
|
|
|
actualExtent.width = std::max(
|
|
capabilities.minImageExtent.width,
|
|
std::min(capabilities.maxImageExtent.width, actualExtent.width));
|
|
actualExtent.height = std::max(
|
|
capabilities.minImageExtent.height,
|
|
std::min(capabilities.maxImageExtent.height, actualExtent.height));
|
|
|
|
return actualExtent;
|
|
}
|
|
}
|
|
|
|
void VulkanBaseApp::createSwapChain() {
|
|
VkSurfaceCapabilitiesKHR capabilities;
|
|
VkSurfaceFormatKHR format;
|
|
VkPresentModeKHR presentMode;
|
|
VkExtent2D extent;
|
|
uint32_t imageCount;
|
|
|
|
{
|
|
std::vector<VkSurfaceFormatKHR> formats;
|
|
std::vector<VkPresentModeKHR> presentModes;
|
|
|
|
getSwapChainProperties(m_physicalDevice, m_surface, capabilities, formats,
|
|
presentModes);
|
|
format = chooseSwapSurfaceFormat(formats);
|
|
presentMode = chooseSwapPresentMode(presentModes);
|
|
extent = chooseSwapExtent(m_window, capabilities);
|
|
imageCount = capabilities.minImageCount + 1;
|
|
if (capabilities.maxImageCount > 0 &&
|
|
imageCount > capabilities.maxImageCount) {
|
|
imageCount = capabilities.maxImageCount;
|
|
}
|
|
}
|
|
|
|
VkSwapchainCreateInfoKHR createInfo = {};
|
|
createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
|
|
createInfo.surface = m_surface;
|
|
|
|
createInfo.minImageCount = imageCount;
|
|
createInfo.imageFormat = format.format;
|
|
createInfo.imageColorSpace = format.colorSpace;
|
|
createInfo.imageExtent = extent;
|
|
createInfo.imageArrayLayers = 1;
|
|
createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
|
|
|
|
uint32_t queueFamilyIndices[2];
|
|
findGraphicsQueueIndicies(m_physicalDevice, m_surface, queueFamilyIndices[0],
|
|
queueFamilyIndices[1]);
|
|
|
|
if (queueFamilyIndices[0] != queueFamilyIndices[1]) {
|
|
createInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
|
|
createInfo.queueFamilyIndexCount = countof(queueFamilyIndices);
|
|
createInfo.pQueueFamilyIndices = queueFamilyIndices;
|
|
} else {
|
|
createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
|
}
|
|
|
|
createInfo.preTransform = capabilities.currentTransform;
|
|
createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
|
|
createInfo.presentMode = presentMode;
|
|
createInfo.clipped = VK_TRUE;
|
|
|
|
createInfo.oldSwapchain = VK_NULL_HANDLE;
|
|
|
|
if (vkCreateSwapchainKHR(m_device, &createInfo, nullptr, &m_swapChain) !=
|
|
VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create swap chain!");
|
|
}
|
|
|
|
vkGetSwapchainImagesKHR(m_device, m_swapChain, &imageCount, nullptr);
|
|
m_swapChainImages.resize(imageCount);
|
|
vkGetSwapchainImagesKHR(m_device, m_swapChain, &imageCount,
|
|
m_swapChainImages.data());
|
|
|
|
m_swapChainFormat = format.format;
|
|
m_swapChainExtent = extent;
|
|
}
|
|
|
|
static VkImageView createImageView(VkDevice dev, VkImage image, VkFormat format,
|
|
VkImageAspectFlags aspectFlags) {
|
|
VkImageView imageView;
|
|
VkImageViewCreateInfo createInfo = {};
|
|
createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
|
|
createInfo.image = image;
|
|
createInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
|
createInfo.format = format;
|
|
createInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
|
|
createInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
|
|
createInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
|
|
createInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
|
|
createInfo.subresourceRange.aspectMask = aspectFlags;
|
|
createInfo.subresourceRange.baseMipLevel = 0;
|
|
createInfo.subresourceRange.levelCount = 1;
|
|
createInfo.subresourceRange.baseArrayLayer = 0;
|
|
createInfo.subresourceRange.layerCount = 1;
|
|
if (vkCreateImageView(dev, &createInfo, nullptr, &imageView) != VK_SUCCESS) {
|
|
throw std::runtime_error("Failed to create image views!");
|
|
}
|
|
|
|
return imageView;
|
|
}
|
|
|
|
static void createImage(VkPhysicalDevice physicalDevice, VkDevice device,
|
|
uint32_t width, uint32_t height, VkFormat format,
|
|
VkImageTiling tiling, VkImageUsageFlags usage,
|
|
VkMemoryPropertyFlags properties, VkImage &image,
|
|
VkDeviceMemory &imageMemory) {
|
|
VkImageCreateInfo imageInfo = {};
|
|
imageInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
|
|
imageInfo.imageType = VK_IMAGE_TYPE_2D;
|
|
imageInfo.extent.width = width;
|
|
imageInfo.extent.height = height;
|
|
imageInfo.extent.depth = 1;
|
|
imageInfo.mipLevels = 1;
|
|
imageInfo.arrayLayers = 1;
|
|
imageInfo.format = format;
|
|
imageInfo.tiling = tiling;
|
|
imageInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
imageInfo.usage = usage;
|
|
imageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
imageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
|
|
|
if (vkCreateImage(device, &imageInfo, nullptr, &image) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create image!");
|
|
}
|
|
|
|
VkMemoryRequirements memRequirements;
|
|
vkGetImageMemoryRequirements(device, image, &memRequirements);
|
|
|
|
VkMemoryAllocateInfo allocInfo = {};
|
|
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
|
|
allocInfo.allocationSize = memRequirements.size;
|
|
allocInfo.memoryTypeIndex = findMemoryType(
|
|
physicalDevice, memRequirements.memoryTypeBits, properties);
|
|
|
|
if (vkAllocateMemory(device, &allocInfo, nullptr, &imageMemory) !=
|
|
VK_SUCCESS) {
|
|
throw std::runtime_error("failed to allocate image memory!");
|
|
}
|
|
|
|
vkBindImageMemory(device, image, imageMemory, 0);
|
|
}
|
|
|
|
void VulkanBaseApp::createImageViews() {
|
|
m_swapChainImageViews.resize(m_swapChainImages.size());
|
|
|
|
for (uint32_t i = 0; i < m_swapChainImages.size(); i++) {
|
|
m_swapChainImageViews[i] =
|
|
createImageView(m_device, m_swapChainImages[i], m_swapChainFormat,
|
|
VK_IMAGE_ASPECT_COLOR_BIT);
|
|
}
|
|
}
|
|
|
|
void VulkanBaseApp::createRenderPass() {
|
|
VkAttachmentDescription colorAttachment = {};
|
|
colorAttachment.format = m_swapChainFormat;
|
|
colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
|
colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
|
|
colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
|
|
colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
|
|
colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
|
|
|
|
VkAttachmentReference colorAttachmentRef = {};
|
|
colorAttachmentRef.attachment = 0;
|
|
colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
|
|
|
|
VkAttachmentDescription depthAttachment = {};
|
|
depthAttachment.format = findSupportedFormat(
|
|
m_physicalDevice, {VK_FORMAT_D32_SFLOAT, VK_FORMAT_D32_SFLOAT_S8_UINT,
|
|
VK_FORMAT_D24_UNORM_S8_UINT},
|
|
VK_IMAGE_TILING_OPTIMAL, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT);
|
|
depthAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
|
|
depthAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
|
|
depthAttachment.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
|
|
depthAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
|
|
depthAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
|
|
depthAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
|
depthAttachment.finalLayout =
|
|
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
|
|
|
|
VkAttachmentReference depthAttachmentRef = {};
|
|
depthAttachmentRef.attachment = 1;
|
|
depthAttachmentRef.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
|
|
|
|
VkSubpassDescription subpass = {};
|
|
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
|
|
subpass.colorAttachmentCount = 1;
|
|
subpass.pColorAttachments = &colorAttachmentRef;
|
|
subpass.pDepthStencilAttachment = &depthAttachmentRef;
|
|
|
|
VkSubpassDependency dependency = {};
|
|
dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
|
|
dependency.dstSubpass = 0;
|
|
dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
|
|
dependency.srcAccessMask = 0;
|
|
dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
|
|
dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
|
|
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
|
|
|
|
VkAttachmentDescription attachments[] = {colorAttachment, depthAttachment};
|
|
VkRenderPassCreateInfo renderPassInfo = {};
|
|
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
|
|
renderPassInfo.attachmentCount = countof(attachments);
|
|
renderPassInfo.pAttachments = attachments;
|
|
renderPassInfo.subpassCount = 1;
|
|
renderPassInfo.pSubpasses = &subpass;
|
|
renderPassInfo.dependencyCount = 1;
|
|
renderPassInfo.pDependencies = &dependency;
|
|
|
|
if (vkCreateRenderPass(m_device, &renderPassInfo, nullptr, &m_renderPass) !=
|
|
VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create render pass!");
|
|
}
|
|
}
|
|
|
|
void VulkanBaseApp::createDescriptorSetLayout() {
|
|
VkDescriptorSetLayoutBinding uboLayoutBinding = {};
|
|
uboLayoutBinding.binding = 0;
|
|
uboLayoutBinding.descriptorCount = 1;
|
|
uboLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
|
|
uboLayoutBinding.pImmutableSamplers = nullptr;
|
|
uboLayoutBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
|
|
|
|
VkDescriptorSetLayoutCreateInfo layoutInfo = {};
|
|
layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
|
|
layoutInfo.bindingCount = 1;
|
|
layoutInfo.pBindings = &uboLayoutBinding;
|
|
|
|
if (vkCreateDescriptorSetLayout(m_device, &layoutInfo, nullptr,
|
|
&m_descriptorSetLayout) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create descriptor set layout!");
|
|
}
|
|
}
|
|
|
|
VkShaderModule createShaderModule(VkDevice device, const char *filename) {
|
|
std::vector<char> shaderContents;
|
|
std::ifstream shaderFile(filename, std::ios_base::in | std::ios_base::binary);
|
|
VkShaderModuleCreateInfo createInfo = {};
|
|
VkShaderModule shaderModule;
|
|
|
|
if (!shaderFile.good()) {
|
|
throw std::runtime_error("Failed to load shader contents");
|
|
}
|
|
readFile(shaderFile, shaderContents);
|
|
|
|
createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
|
|
createInfo.codeSize = shaderContents.size();
|
|
createInfo.pCode = reinterpret_cast<const uint32_t *>(shaderContents.data());
|
|
|
|
if (vkCreateShaderModule(device, &createInfo, nullptr, &shaderModule) !=
|
|
VK_SUCCESS) {
|
|
throw std::runtime_error("Failed to create shader module!");
|
|
}
|
|
|
|
return shaderModule;
|
|
}
|
|
|
|
void VulkanBaseApp::getVertexDescriptions(
|
|
std::vector<VkVertexInputBindingDescription> &bindingDesc,
|
|
std::vector<VkVertexInputAttributeDescription> &attribDesc) {}
|
|
|
|
void VulkanBaseApp::getAssemblyStateInfo(
|
|
VkPipelineInputAssemblyStateCreateInfo &info) {}
|
|
|
|
void VulkanBaseApp::createGraphicsPipeline() {
|
|
std::vector<VkPipelineShaderStageCreateInfo> shaderStageInfos(
|
|
m_shaderFiles.size());
|
|
for (size_t i = 0; i < m_shaderFiles.size(); i++) {
|
|
shaderStageInfos[i] = {};
|
|
shaderStageInfos[i].sType =
|
|
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
|
|
shaderStageInfos[i].stage = m_shaderFiles[i].first;
|
|
shaderStageInfos[i].module =
|
|
createShaderModule(m_device, m_shaderFiles[i].second.c_str());
|
|
shaderStageInfos[i].pName = "main";
|
|
}
|
|
|
|
VkPipelineVertexInputStateCreateInfo vertexInputInfo = {};
|
|
|
|
std::vector<VkVertexInputBindingDescription> vertexBindingDescriptions;
|
|
std::vector<VkVertexInputAttributeDescription> vertexAttributeDescriptions;
|
|
|
|
getVertexDescriptions(vertexBindingDescriptions, vertexAttributeDescriptions);
|
|
|
|
vertexInputInfo.sType =
|
|
VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
|
|
vertexInputInfo.vertexBindingDescriptionCount =
|
|
static_cast<uint32_t>(vertexBindingDescriptions.size());
|
|
vertexInputInfo.pVertexBindingDescriptions = vertexBindingDescriptions.data();
|
|
vertexInputInfo.vertexAttributeDescriptionCount =
|
|
static_cast<uint32_t>(vertexAttributeDescriptions.size());
|
|
vertexInputInfo.pVertexAttributeDescriptions =
|
|
vertexAttributeDescriptions.data();
|
|
|
|
VkPipelineInputAssemblyStateCreateInfo inputAssembly = {};
|
|
getAssemblyStateInfo(inputAssembly);
|
|
|
|
VkViewport viewport = {};
|
|
viewport.x = 0.0f;
|
|
viewport.y = 0.0f;
|
|
viewport.width = (float)m_swapChainExtent.width;
|
|
viewport.height = (float)m_swapChainExtent.height;
|
|
viewport.minDepth = 0.0f;
|
|
viewport.maxDepth = 1.0f;
|
|
|
|
VkRect2D scissor = {};
|
|
scissor.offset = {0, 0};
|
|
scissor.extent = m_swapChainExtent;
|
|
|
|
VkPipelineViewportStateCreateInfo viewportState = {};
|
|
viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
|
|
viewportState.viewportCount = 1;
|
|
viewportState.pViewports = &viewport;
|
|
viewportState.scissorCount = 1;
|
|
viewportState.pScissors = &scissor;
|
|
|
|
VkPipelineRasterizationStateCreateInfo rasterizer = {};
|
|
rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
|
|
rasterizer.depthClampEnable = VK_FALSE;
|
|
rasterizer.rasterizerDiscardEnable = VK_FALSE;
|
|
rasterizer.polygonMode = VK_POLYGON_MODE_LINE;
|
|
rasterizer.lineWidth = 1.0f;
|
|
rasterizer.cullMode = VK_CULL_MODE_NONE;
|
|
rasterizer.frontFace = VK_FRONT_FACE_CLOCKWISE;
|
|
rasterizer.depthBiasEnable = VK_FALSE;
|
|
|
|
VkPipelineMultisampleStateCreateInfo multisampling = {};
|
|
multisampling.sType =
|
|
VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
|
|
multisampling.sampleShadingEnable = VK_FALSE;
|
|
multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
|
|
multisampling.minSampleShading = 1.0f; // Optional
|
|
multisampling.pSampleMask = nullptr; // Optional
|
|
multisampling.alphaToCoverageEnable = VK_FALSE; // Optional
|
|
multisampling.alphaToOneEnable = VK_FALSE; // Optional
|
|
|
|
VkPipelineDepthStencilStateCreateInfo depthStencil = {};
|
|
depthStencil.sType =
|
|
VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
|
|
depthStencil.depthTestEnable = VK_TRUE;
|
|
depthStencil.depthWriteEnable = VK_TRUE;
|
|
depthStencil.depthCompareOp = VK_COMPARE_OP_LESS;
|
|
depthStencil.depthBoundsTestEnable = VK_FALSE;
|
|
depthStencil.stencilTestEnable = VK_FALSE;
|
|
|
|
VkPipelineColorBlendAttachmentState colorBlendAttachment = {};
|
|
colorBlendAttachment.colorWriteMask =
|
|
VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT |
|
|
VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
|
|
colorBlendAttachment.blendEnable = VK_FALSE;
|
|
|
|
VkPipelineColorBlendStateCreateInfo colorBlending = {};
|
|
colorBlending.sType =
|
|
VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
|
|
colorBlending.logicOpEnable = VK_FALSE;
|
|
colorBlending.logicOp = VK_LOGIC_OP_COPY;
|
|
colorBlending.attachmentCount = 1;
|
|
colorBlending.pAttachments = &colorBlendAttachment;
|
|
colorBlending.blendConstants[0] = 0.0f;
|
|
colorBlending.blendConstants[1] = 0.0f;
|
|
colorBlending.blendConstants[2] = 0.0f;
|
|
colorBlending.blendConstants[3] = 0.0f;
|
|
|
|
VkPipelineLayoutCreateInfo pipelineLayoutInfo = {};
|
|
pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
|
|
pipelineLayoutInfo.setLayoutCount = 1; // Optional
|
|
pipelineLayoutInfo.pSetLayouts = &m_descriptorSetLayout; // Optional
|
|
pipelineLayoutInfo.pushConstantRangeCount = 0; // Optional
|
|
pipelineLayoutInfo.pPushConstantRanges = nullptr; // Optional
|
|
|
|
if (vkCreatePipelineLayout(m_device, &pipelineLayoutInfo, nullptr,
|
|
&m_pipelineLayout) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create pipeline layout!");
|
|
}
|
|
|
|
VkGraphicsPipelineCreateInfo pipelineInfo = {};
|
|
pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
|
|
pipelineInfo.stageCount = static_cast<uint32_t>(shaderStageInfos.size());
|
|
pipelineInfo.pStages = shaderStageInfos.data();
|
|
|
|
pipelineInfo.pVertexInputState = &vertexInputInfo;
|
|
pipelineInfo.pInputAssemblyState = &inputAssembly;
|
|
pipelineInfo.pViewportState = &viewportState;
|
|
pipelineInfo.pRasterizationState = &rasterizer;
|
|
pipelineInfo.pMultisampleState = &multisampling;
|
|
pipelineInfo.pDepthStencilState = &depthStencil; // Optional
|
|
pipelineInfo.pColorBlendState = &colorBlending;
|
|
pipelineInfo.pDynamicState = nullptr; // Optional
|
|
|
|
pipelineInfo.layout = m_pipelineLayout;
|
|
|
|
pipelineInfo.renderPass = m_renderPass;
|
|
pipelineInfo.subpass = 0;
|
|
|
|
pipelineInfo.basePipelineHandle = VK_NULL_HANDLE; // Optional
|
|
pipelineInfo.basePipelineIndex = -1; // Optional
|
|
|
|
if (vkCreateGraphicsPipelines(m_device, VK_NULL_HANDLE, 1, &pipelineInfo,
|
|
nullptr, &m_graphicsPipeline) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create graphics pipeline!");
|
|
}
|
|
|
|
for (size_t i = 0; i < shaderStageInfos.size(); i++) {
|
|
vkDestroyShaderModule(m_device, shaderStageInfos[i].module, nullptr);
|
|
}
|
|
}
|
|
|
|
void VulkanBaseApp::createFramebuffers() {
|
|
m_swapChainFramebuffers.resize(m_swapChainImageViews.size());
|
|
for (size_t i = 0; i < m_swapChainImageViews.size(); i++) {
|
|
VkImageView attachments[] = {m_swapChainImageViews[i], m_depthImageView};
|
|
|
|
VkFramebufferCreateInfo framebufferInfo = {};
|
|
framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
|
|
framebufferInfo.renderPass = m_renderPass;
|
|
framebufferInfo.attachmentCount = countof(attachments);
|
|
framebufferInfo.pAttachments = attachments;
|
|
framebufferInfo.width = m_swapChainExtent.width;
|
|
framebufferInfo.height = m_swapChainExtent.height;
|
|
framebufferInfo.layers = 1;
|
|
|
|
if (vkCreateFramebuffer(m_device, &framebufferInfo, nullptr,
|
|
&m_swapChainFramebuffers[i]) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create framebuffer!");
|
|
}
|
|
}
|
|
}
|
|
|
|
void VulkanBaseApp::createCommandPool() {
|
|
VkCommandPoolCreateInfo poolInfo = {};
|
|
uint32_t graphicsIndex, presentIndex;
|
|
|
|
findGraphicsQueueIndicies(m_physicalDevice, m_surface, graphicsIndex,
|
|
presentIndex);
|
|
|
|
poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
|
|
poolInfo.queueFamilyIndex = graphicsIndex;
|
|
poolInfo.flags = 0; // Optional
|
|
|
|
if (vkCreateCommandPool(m_device, &poolInfo, nullptr, &m_commandPool) !=
|
|
VK_SUCCESS) {
|
|
throw std::runtime_error("Failed to create command pool!");
|
|
}
|
|
}
|
|
|
|
static void transitionImageLayout(VulkanBaseApp *app, VkImage image,
|
|
VkFormat format, VkImageLayout oldLayout,
|
|
VkImageLayout newLayout) {
|
|
VkCommandBuffer commandBuffer = app->beginSingleTimeCommands();
|
|
|
|
VkImageMemoryBarrier barrier = {};
|
|
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
|
|
barrier.oldLayout = oldLayout;
|
|
barrier.newLayout = newLayout;
|
|
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
|
|
barrier.image = image;
|
|
|
|
if (newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) {
|
|
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
|
|
|
|
if (format == VK_FORMAT_D32_SFLOAT_S8_UINT ||
|
|
format == VK_FORMAT_D24_UNORM_S8_UINT) {
|
|
barrier.subresourceRange.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
|
|
}
|
|
} else {
|
|
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
|
}
|
|
|
|
barrier.subresourceRange.baseMipLevel = 0;
|
|
barrier.subresourceRange.levelCount = 1;
|
|
barrier.subresourceRange.baseArrayLayer = 0;
|
|
barrier.subresourceRange.layerCount = 1;
|
|
|
|
VkPipelineStageFlags sourceStage;
|
|
VkPipelineStageFlags destinationStage;
|
|
|
|
if (oldLayout == VK_IMAGE_LAYOUT_UNDEFINED &&
|
|
newLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
|
|
barrier.srcAccessMask = 0;
|
|
barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
|
|
|
|
sourceStage = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
|
|
destinationStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
|
|
} else if (oldLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL &&
|
|
newLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
|
|
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
|
|
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
|
|
|
|
sourceStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
|
|
destinationStage = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
|
|
} else if (oldLayout == VK_IMAGE_LAYOUT_UNDEFINED &&
|
|
newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) {
|
|
barrier.srcAccessMask = 0;
|
|
barrier.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
|
|
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
|
|
|
|
sourceStage = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
|
|
destinationStage = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT;
|
|
} else {
|
|
throw std::invalid_argument("unsupported layout transition!");
|
|
}
|
|
|
|
vkCmdPipelineBarrier(commandBuffer, sourceStage, destinationStage, 0, 0,
|
|
nullptr, 0, nullptr, 1, &barrier);
|
|
|
|
app->endSingleTimeCommands(commandBuffer);
|
|
}
|
|
|
|
void VulkanBaseApp::createDepthResources() {
|
|
VkFormat depthFormat = findSupportedFormat(
|
|
m_physicalDevice, {VK_FORMAT_D32_SFLOAT, VK_FORMAT_D32_SFLOAT_S8_UINT,
|
|
VK_FORMAT_D24_UNORM_S8_UINT},
|
|
VK_IMAGE_TILING_OPTIMAL, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT);
|
|
createImage(m_physicalDevice, m_device, m_swapChainExtent.width,
|
|
m_swapChainExtent.height, depthFormat, VK_IMAGE_TILING_OPTIMAL,
|
|
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
|
|
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, m_depthImage,
|
|
m_depthImageMemory);
|
|
m_depthImageView = createImageView(m_device, m_depthImage, depthFormat,
|
|
VK_IMAGE_ASPECT_DEPTH_BIT);
|
|
transitionImageLayout(this, m_depthImage, depthFormat,
|
|
VK_IMAGE_LAYOUT_UNDEFINED,
|
|
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
|
|
}
|
|
|
|
void VulkanBaseApp::createUniformBuffers() {
|
|
VkDeviceSize size = getUniformSize();
|
|
if (size > 0) {
|
|
m_uniformBuffers.resize(m_swapChainImages.size());
|
|
m_uniformMemory.resize(m_swapChainImages.size());
|
|
for (size_t i = 0; i < m_uniformBuffers.size(); i++) {
|
|
createBuffer(getUniformSize(), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
m_uniformBuffers[i], m_uniformMemory[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void VulkanBaseApp::createDescriptorPool() {
|
|
VkDescriptorPoolSize poolSize = {};
|
|
poolSize.type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
|
|
poolSize.descriptorCount = static_cast<uint32_t>(m_swapChainImages.size());
|
|
VkDescriptorPoolCreateInfo poolInfo = {};
|
|
poolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
|
|
poolInfo.poolSizeCount = 1;
|
|
poolInfo.pPoolSizes = &poolSize;
|
|
poolInfo.maxSets = static_cast<uint32_t>(m_swapChainImages.size());
|
|
if (vkCreateDescriptorPool(m_device, &poolInfo, nullptr, &m_descriptorPool) !=
|
|
VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create descriptor pool!");
|
|
}
|
|
}
|
|
|
|
void VulkanBaseApp::createDescriptorSets() {
|
|
std::vector<VkDescriptorSetLayout> layouts(m_swapChainImages.size(),
|
|
m_descriptorSetLayout);
|
|
VkDescriptorSetAllocateInfo allocInfo = {};
|
|
allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
|
|
allocInfo.descriptorPool = m_descriptorPool;
|
|
allocInfo.descriptorSetCount =
|
|
static_cast<uint32_t>(m_swapChainImages.size());
|
|
allocInfo.pSetLayouts = layouts.data();
|
|
m_descriptorSets.resize(m_swapChainImages.size());
|
|
|
|
if (vkAllocateDescriptorSets(m_device, &allocInfo, m_descriptorSets.data()) !=
|
|
VK_SUCCESS) {
|
|
throw std::runtime_error("failed to allocate descriptor sets!");
|
|
}
|
|
|
|
VkDescriptorBufferInfo bufferInfo = {};
|
|
bufferInfo.offset = 0;
|
|
bufferInfo.range = VK_WHOLE_SIZE;
|
|
VkWriteDescriptorSet descriptorWrite = {};
|
|
descriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
|
|
descriptorWrite.dstBinding = 0;
|
|
descriptorWrite.dstArrayElement = 0;
|
|
descriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
|
|
descriptorWrite.descriptorCount = 1;
|
|
descriptorWrite.pBufferInfo = &bufferInfo;
|
|
descriptorWrite.pImageInfo = nullptr; // Optional
|
|
descriptorWrite.pTexelBufferView = nullptr; // Optional
|
|
|
|
for (size_t i = 0; i < m_swapChainImages.size(); i++) {
|
|
bufferInfo.buffer = m_uniformBuffers[i];
|
|
descriptorWrite.dstSet = m_descriptorSets[i];
|
|
vkUpdateDescriptorSets(m_device, 1, &descriptorWrite, 0, nullptr);
|
|
}
|
|
}
|
|
|
|
void VulkanBaseApp::createCommandBuffers() {
|
|
m_commandBuffers.resize(m_swapChainFramebuffers.size());
|
|
VkCommandBufferAllocateInfo allocInfo = {};
|
|
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
|
|
allocInfo.commandPool = m_commandPool;
|
|
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
|
|
allocInfo.commandBufferCount = (uint32_t)m_commandBuffers.size();
|
|
|
|
if (vkAllocateCommandBuffers(m_device, &allocInfo, m_commandBuffers.data()) !=
|
|
VK_SUCCESS) {
|
|
throw std::runtime_error("failed to allocate command buffers!");
|
|
}
|
|
|
|
for (size_t i = 0; i < m_commandBuffers.size(); i++) {
|
|
VkCommandBufferBeginInfo beginInfo = {};
|
|
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
|
|
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT;
|
|
beginInfo.pInheritanceInfo = nullptr; // Optional
|
|
|
|
if (vkBeginCommandBuffer(m_commandBuffers[i], &beginInfo) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to begin recording command buffer!");
|
|
}
|
|
|
|
VkRenderPassBeginInfo renderPassInfo = {};
|
|
renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
|
|
renderPassInfo.renderPass = m_renderPass;
|
|
renderPassInfo.framebuffer = m_swapChainFramebuffers[i];
|
|
|
|
renderPassInfo.renderArea.offset = {0, 0};
|
|
renderPassInfo.renderArea.extent = m_swapChainExtent;
|
|
|
|
VkClearValue clearColors[2];
|
|
clearColors[0].color = {0.0f, 0.0f, 0.0f, 1.0f};
|
|
clearColors[1].depthStencil = {1.0f, 0};
|
|
renderPassInfo.clearValueCount = countof(clearColors);
|
|
renderPassInfo.pClearValues = clearColors;
|
|
|
|
vkCmdBeginRenderPass(m_commandBuffers[i], &renderPassInfo,
|
|
VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
vkCmdBindPipeline(m_commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS,
|
|
m_graphicsPipeline);
|
|
|
|
vkCmdBindDescriptorSets(m_commandBuffers[i],
|
|
VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipelineLayout,
|
|
0, 1, &m_descriptorSets[i], 0, nullptr);
|
|
|
|
fillRenderingCommandBuffer(m_commandBuffers[i]);
|
|
|
|
vkCmdEndRenderPass(m_commandBuffers[i]);
|
|
|
|
if (vkEndCommandBuffer(m_commandBuffers[i]) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to record command buffer!");
|
|
}
|
|
}
|
|
}
|
|
|
|
void VulkanBaseApp::createSyncObjects() {
|
|
VkSemaphoreCreateInfo semaphoreInfo = {};
|
|
semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
|
|
VkFenceCreateInfo fenceInfo = {};
|
|
fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
|
|
fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;
|
|
|
|
m_inFlightFences.resize(MAX_FRAMES_IN_FLIGHT);
|
|
m_imageAvailableSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
|
|
m_renderFinishedSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
|
|
|
|
for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
|
|
if (vkCreateSemaphore(m_device, &semaphoreInfo, nullptr,
|
|
&m_imageAvailableSemaphores[i]) != VK_SUCCESS) {
|
|
throw std::runtime_error("Failed to create image available semaphore!");
|
|
}
|
|
if (vkCreateSemaphore(m_device, &semaphoreInfo, nullptr,
|
|
&m_renderFinishedSemaphores[i]) != VK_SUCCESS) {
|
|
throw std::runtime_error("Failed to create image available semaphore!");
|
|
}
|
|
if (vkCreateFence(m_device, &fenceInfo, nullptr, &m_inFlightFences[i]) !=
|
|
VK_SUCCESS) {
|
|
throw std::runtime_error("Failed to create image available semaphore!");
|
|
}
|
|
}
|
|
|
|
#ifdef _VK_TIMELINE_SEMAPHORE
|
|
if (vkCreateSemaphore(m_device, &semaphoreInfo, nullptr,
|
|
&m_vkPresentationSemaphore) != VK_SUCCESS) {
|
|
throw std::runtime_error("Failed to create binary semaphore!");
|
|
}
|
|
#endif /* _VK_TIMELINE_SEMAPHORE */
|
|
}
|
|
|
|
void VulkanBaseApp::getWaitFrameSemaphores(
|
|
std::vector<VkSemaphore> &wait,
|
|
std::vector<VkPipelineStageFlags> &waitStages) const {}
|
|
|
|
void VulkanBaseApp::getSignalFrameSemaphores(
|
|
std::vector<VkSemaphore> &signal) const {}
|
|
|
|
VkDeviceSize VulkanBaseApp::getUniformSize() const { return VkDeviceSize(0); }
|
|
|
|
void VulkanBaseApp::updateUniformBuffer(uint32_t imageIndex) {}
|
|
|
|
void VulkanBaseApp::createBuffer(VkDeviceSize size, VkBufferUsageFlags usage,
|
|
VkMemoryPropertyFlags properties,
|
|
VkBuffer &buffer,
|
|
VkDeviceMemory &bufferMemory) {
|
|
VkBufferCreateInfo bufferInfo = {};
|
|
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
|
|
bufferInfo.size = size;
|
|
bufferInfo.usage = usage;
|
|
bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
|
|
|
if (vkCreateBuffer(m_device, &bufferInfo, nullptr, &buffer) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create buffer!");
|
|
}
|
|
|
|
VkMemoryRequirements memRequirements;
|
|
vkGetBufferMemoryRequirements(m_device, buffer, &memRequirements);
|
|
|
|
VkMemoryAllocateInfo allocInfo = {};
|
|
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
|
|
allocInfo.allocationSize = memRequirements.size;
|
|
allocInfo.memoryTypeIndex = findMemoryType(
|
|
m_physicalDevice, memRequirements.memoryTypeBits, properties);
|
|
|
|
if (vkAllocateMemory(m_device, &allocInfo, nullptr, &bufferMemory) !=
|
|
VK_SUCCESS) {
|
|
throw std::runtime_error("failed to allocate buffer memory!");
|
|
}
|
|
|
|
vkBindBufferMemory(m_device, buffer, bufferMemory, 0);
|
|
}
|
|
|
|
void VulkanBaseApp::createExternalBuffer(
|
|
VkDeviceSize size, VkBufferUsageFlags usage,
|
|
VkMemoryPropertyFlags properties,
|
|
VkExternalMemoryHandleTypeFlagsKHR extMemHandleType, VkBuffer &buffer,
|
|
VkDeviceMemory &bufferMemory) {
|
|
VkBufferCreateInfo bufferInfo = {};
|
|
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
|
|
bufferInfo.size = size;
|
|
bufferInfo.usage = usage;
|
|
bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
|
|
|
VkExternalMemoryBufferCreateInfo externalMemoryBufferInfo = {};
|
|
externalMemoryBufferInfo.sType =
|
|
VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO;
|
|
externalMemoryBufferInfo.handleTypes = extMemHandleType;
|
|
bufferInfo.pNext = &externalMemoryBufferInfo;
|
|
|
|
if (vkCreateBuffer(m_device, &bufferInfo, nullptr, &buffer) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create buffer!");
|
|
}
|
|
|
|
VkMemoryRequirements memRequirements;
|
|
vkGetBufferMemoryRequirements(m_device, buffer, &memRequirements);
|
|
|
|
#ifdef _WIN64
|
|
WindowsSecurityAttributes winSecurityAttributes;
|
|
|
|
VkExportMemoryWin32HandleInfoKHR vulkanExportMemoryWin32HandleInfoKHR = {};
|
|
vulkanExportMemoryWin32HandleInfoKHR.sType =
|
|
VK_STRUCTURE_TYPE_EXPORT_MEMORY_WIN32_HANDLE_INFO_KHR;
|
|
vulkanExportMemoryWin32HandleInfoKHR.pNext = NULL;
|
|
vulkanExportMemoryWin32HandleInfoKHR.pAttributes = &winSecurityAttributes;
|
|
vulkanExportMemoryWin32HandleInfoKHR.dwAccess =
|
|
DXGI_SHARED_RESOURCE_READ | DXGI_SHARED_RESOURCE_WRITE;
|
|
vulkanExportMemoryWin32HandleInfoKHR.name = (LPCWSTR)NULL;
|
|
#endif /* _WIN64 */
|
|
VkExportMemoryAllocateInfoKHR vulkanExportMemoryAllocateInfoKHR = {};
|
|
vulkanExportMemoryAllocateInfoKHR.sType =
|
|
VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR;
|
|
#ifdef _WIN64
|
|
vulkanExportMemoryAllocateInfoKHR.pNext =
|
|
extMemHandleType & VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHR
|
|
? &vulkanExportMemoryWin32HandleInfoKHR
|
|
: NULL;
|
|
vulkanExportMemoryAllocateInfoKHR.handleTypes = extMemHandleType;
|
|
#else
|
|
vulkanExportMemoryAllocateInfoKHR.pNext = NULL;
|
|
vulkanExportMemoryAllocateInfoKHR.handleTypes =
|
|
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT;
|
|
#endif /* _WIN64 */
|
|
VkMemoryAllocateInfo allocInfo = {};
|
|
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
|
|
allocInfo.pNext = &vulkanExportMemoryAllocateInfoKHR;
|
|
allocInfo.allocationSize = memRequirements.size;
|
|
allocInfo.memoryTypeIndex = findMemoryType(
|
|
m_physicalDevice, memRequirements.memoryTypeBits, properties);
|
|
|
|
if (vkAllocateMemory(m_device, &allocInfo, nullptr, &bufferMemory) !=
|
|
VK_SUCCESS) {
|
|
throw std::runtime_error("failed to allocate external buffer memory!");
|
|
}
|
|
|
|
vkBindBufferMemory(m_device, buffer, bufferMemory, 0);
|
|
}
|
|
|
|
void *VulkanBaseApp::getMemHandle(
|
|
VkDeviceMemory memory, VkExternalMemoryHandleTypeFlagBits handleType) {
|
|
#ifdef _WIN64
|
|
HANDLE handle = 0;
|
|
|
|
VkMemoryGetWin32HandleInfoKHR vkMemoryGetWin32HandleInfoKHR = {};
|
|
vkMemoryGetWin32HandleInfoKHR.sType =
|
|
VK_STRUCTURE_TYPE_MEMORY_GET_WIN32_HANDLE_INFO_KHR;
|
|
vkMemoryGetWin32HandleInfoKHR.pNext = NULL;
|
|
vkMemoryGetWin32HandleInfoKHR.memory = memory;
|
|
vkMemoryGetWin32HandleInfoKHR.handleType = handleType;
|
|
|
|
PFN_vkGetMemoryWin32HandleKHR fpGetMemoryWin32HandleKHR;
|
|
fpGetMemoryWin32HandleKHR =
|
|
(PFN_vkGetMemoryWin32HandleKHR)vkGetDeviceProcAddr(
|
|
m_device, "vkGetMemoryWin32HandleKHR");
|
|
if (!fpGetMemoryWin32HandleKHR) {
|
|
throw std::runtime_error("Failed to retrieve vkGetMemoryWin32HandleKHR!");
|
|
}
|
|
if (fpGetMemoryWin32HandleKHR(m_device, &vkMemoryGetWin32HandleInfoKHR,
|
|
&handle) != VK_SUCCESS) {
|
|
throw std::runtime_error("Failed to retrieve handle for buffer!");
|
|
}
|
|
return (void *)handle;
|
|
#else
|
|
int fd = -1;
|
|
|
|
VkMemoryGetFdInfoKHR vkMemoryGetFdInfoKHR = {};
|
|
vkMemoryGetFdInfoKHR.sType = VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR;
|
|
vkMemoryGetFdInfoKHR.pNext = NULL;
|
|
vkMemoryGetFdInfoKHR.memory = memory;
|
|
vkMemoryGetFdInfoKHR.handleType = handleType;
|
|
|
|
PFN_vkGetMemoryFdKHR fpGetMemoryFdKHR;
|
|
fpGetMemoryFdKHR =
|
|
(PFN_vkGetMemoryFdKHR)vkGetDeviceProcAddr(m_device, "vkGetMemoryFdKHR");
|
|
if (!fpGetMemoryFdKHR) {
|
|
throw std::runtime_error("Failed to retrieve vkGetMemoryWin32HandleKHR!");
|
|
}
|
|
if (fpGetMemoryFdKHR(m_device, &vkMemoryGetFdInfoKHR, &fd) != VK_SUCCESS) {
|
|
throw std::runtime_error("Failed to retrieve handle for buffer!");
|
|
}
|
|
return (void *)(uintptr_t)fd;
|
|
#endif /* _WIN64 */
|
|
}
|
|
|
|
void *VulkanBaseApp::getSemaphoreHandle(
|
|
VkSemaphore semaphore, VkExternalSemaphoreHandleTypeFlagBits handleType) {
|
|
#ifdef _WIN64
|
|
HANDLE handle;
|
|
|
|
VkSemaphoreGetWin32HandleInfoKHR semaphoreGetWin32HandleInfoKHR = {};
|
|
semaphoreGetWin32HandleInfoKHR.sType =
|
|
VK_STRUCTURE_TYPE_SEMAPHORE_GET_WIN32_HANDLE_INFO_KHR;
|
|
semaphoreGetWin32HandleInfoKHR.pNext = NULL;
|
|
semaphoreGetWin32HandleInfoKHR.semaphore = semaphore;
|
|
semaphoreGetWin32HandleInfoKHR.handleType = handleType;
|
|
|
|
PFN_vkGetSemaphoreWin32HandleKHR fpGetSemaphoreWin32HandleKHR;
|
|
fpGetSemaphoreWin32HandleKHR =
|
|
(PFN_vkGetSemaphoreWin32HandleKHR)vkGetDeviceProcAddr(
|
|
m_device, "vkGetSemaphoreWin32HandleKHR");
|
|
if (!fpGetSemaphoreWin32HandleKHR) {
|
|
throw std::runtime_error("Failed to retrieve vkGetMemoryWin32HandleKHR!");
|
|
}
|
|
if (fpGetSemaphoreWin32HandleKHR(m_device, &semaphoreGetWin32HandleInfoKHR,
|
|
&handle) != VK_SUCCESS) {
|
|
throw std::runtime_error("Failed to retrieve handle for buffer!");
|
|
}
|
|
|
|
return (void *)handle;
|
|
#else
|
|
int fd;
|
|
|
|
VkSemaphoreGetFdInfoKHR semaphoreGetFdInfoKHR = {};
|
|
semaphoreGetFdInfoKHR.sType = VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR;
|
|
semaphoreGetFdInfoKHR.pNext = NULL;
|
|
semaphoreGetFdInfoKHR.semaphore = semaphore;
|
|
semaphoreGetFdInfoKHR.handleType = handleType;
|
|
|
|
PFN_vkGetSemaphoreFdKHR fpGetSemaphoreFdKHR;
|
|
fpGetSemaphoreFdKHR = (PFN_vkGetSemaphoreFdKHR)vkGetDeviceProcAddr(
|
|
m_device, "vkGetSemaphoreFdKHR");
|
|
if (!fpGetSemaphoreFdKHR) {
|
|
throw std::runtime_error("Failed to retrieve vkGetMemoryWin32HandleKHR!");
|
|
}
|
|
if (fpGetSemaphoreFdKHR(m_device, &semaphoreGetFdInfoKHR, &fd) !=
|
|
VK_SUCCESS) {
|
|
throw std::runtime_error("Failed to retrieve handle for buffer!");
|
|
}
|
|
|
|
return (void *)(uintptr_t)fd;
|
|
#endif /* _WIN64 */
|
|
}
|
|
|
|
void VulkanBaseApp::createExternalSemaphore(
|
|
VkSemaphore &semaphore, VkExternalSemaphoreHandleTypeFlagBits handleType) {
|
|
VkSemaphoreCreateInfo semaphoreInfo = {};
|
|
semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
|
|
VkExportSemaphoreCreateInfoKHR exportSemaphoreCreateInfo = {};
|
|
exportSemaphoreCreateInfo.sType =
|
|
VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO_KHR;
|
|
|
|
#ifdef _VK_TIMELINE_SEMAPHORE
|
|
VkSemaphoreTypeCreateInfo timelineCreateInfo;
|
|
timelineCreateInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_TYPE_CREATE_INFO;
|
|
timelineCreateInfo.pNext = NULL;
|
|
timelineCreateInfo.semaphoreType = VK_SEMAPHORE_TYPE_TIMELINE;
|
|
timelineCreateInfo.initialValue = 0;
|
|
exportSemaphoreCreateInfo.pNext = &timelineCreateInfo;
|
|
#else
|
|
exportSemaphoreCreateInfo.pNext = NULL;
|
|
#endif /* _VK_TIMELINE_SEMAPHORE */
|
|
exportSemaphoreCreateInfo.handleTypes = handleType;
|
|
semaphoreInfo.pNext = &exportSemaphoreCreateInfo;
|
|
|
|
if (vkCreateSemaphore(m_device, &semaphoreInfo, nullptr, &semaphore) !=
|
|
VK_SUCCESS) {
|
|
throw std::runtime_error(
|
|
"failed to create synchronization objects for a CUDA-Vulkan!");
|
|
}
|
|
}
|
|
|
|
void VulkanBaseApp::importExternalBuffer(
|
|
void *handle, VkExternalMemoryHandleTypeFlagBits handleType, size_t size,
|
|
VkBufferUsageFlags usage, VkMemoryPropertyFlags properties,
|
|
VkBuffer &buffer, VkDeviceMemory &memory) {
|
|
VkBufferCreateInfo bufferInfo = {};
|
|
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
|
|
bufferInfo.size = size;
|
|
bufferInfo.usage = usage;
|
|
bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
|
|
|
if (vkCreateBuffer(m_device, &bufferInfo, nullptr, &buffer) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to create buffer!");
|
|
}
|
|
|
|
VkMemoryRequirements memRequirements;
|
|
vkGetBufferMemoryRequirements(m_device, buffer, &memRequirements);
|
|
|
|
#ifdef _WIN64
|
|
VkImportMemoryWin32HandleInfoKHR handleInfo = {};
|
|
handleInfo.sType = VK_STRUCTURE_TYPE_IMPORT_MEMORY_WIN32_HANDLE_INFO_KHR;
|
|
handleInfo.pNext = NULL;
|
|
handleInfo.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT;
|
|
handleInfo.handle = handle;
|
|
handleInfo.name = NULL;
|
|
#else
|
|
VkImportMemoryFdInfoKHR handleInfo = {};
|
|
handleInfo.sType = VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR;
|
|
handleInfo.pNext = NULL;
|
|
handleInfo.fd = (int)(uintptr_t)handle;
|
|
handleInfo.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT;
|
|
#endif /* _WIN64 */
|
|
|
|
VkMemoryAllocateInfo memAllocation = {};
|
|
memAllocation.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
|
|
memAllocation.pNext = (void *)&handleInfo;
|
|
memAllocation.allocationSize = size;
|
|
memAllocation.memoryTypeIndex = findMemoryType(
|
|
m_physicalDevice, memRequirements.memoryTypeBits, properties);
|
|
|
|
if (vkAllocateMemory(m_device, &memAllocation, nullptr, &memory) !=
|
|
VK_SUCCESS) {
|
|
throw std::runtime_error("Failed to import allocation!");
|
|
}
|
|
|
|
vkBindBufferMemory(m_device, buffer, memory, 0);
|
|
}
|
|
|
|
void VulkanBaseApp::copyBuffer(VkBuffer dst, VkBuffer src, VkDeviceSize size) {
|
|
VkCommandBuffer commandBuffer = beginSingleTimeCommands();
|
|
|
|
VkBufferCopy copyRegion = {};
|
|
copyRegion.size = size;
|
|
vkCmdCopyBuffer(commandBuffer, src, dst, 1, ©Region);
|
|
|
|
endSingleTimeCommands(commandBuffer);
|
|
}
|
|
#ifdef _VK_TIMELINE_SEMAPHORE
|
|
void VulkanBaseApp::drawFrame() {
|
|
static uint64_t waitValue = 0;
|
|
static uint64_t signalValue = 1;
|
|
|
|
VkSemaphoreWaitInfo semaphoreWaitInfo = {};
|
|
semaphoreWaitInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_WAIT_INFO;
|
|
semaphoreWaitInfo.pSemaphores = &m_vkTimelineSemaphore;
|
|
semaphoreWaitInfo.semaphoreCount = 1;
|
|
semaphoreWaitInfo.pValues = &waitValue;
|
|
vkWaitSemaphores(m_device, &semaphoreWaitInfo,
|
|
std::numeric_limits<uint64_t>::max());
|
|
|
|
uint32_t imageIndex;
|
|
VkResult result = vkAcquireNextImageKHR(
|
|
m_device, m_swapChain, std::numeric_limits<uint64_t>::max(),
|
|
m_vkPresentationSemaphore, VK_NULL_HANDLE, &imageIndex);
|
|
if (result == VK_ERROR_OUT_OF_DATE_KHR) {
|
|
recreateSwapChain();
|
|
} else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) {
|
|
throw std::runtime_error("Failed to acquire swap chain image!");
|
|
}
|
|
|
|
updateUniformBuffer(imageIndex);
|
|
|
|
VkSubmitInfo submitInfo = {};
|
|
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
|
|
|
std::vector<VkSemaphore> waitSemaphores;
|
|
std::vector<VkPipelineStageFlags> waitStages;
|
|
|
|
waitSemaphores.push_back(m_vkTimelineSemaphore);
|
|
waitStages.push_back(VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT);
|
|
|
|
submitInfo.waitSemaphoreCount = (uint32_t)waitSemaphores.size();
|
|
submitInfo.pWaitSemaphores = waitSemaphores.data();
|
|
submitInfo.pWaitDstStageMask = waitStages.data();
|
|
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &m_commandBuffers[imageIndex];
|
|
|
|
std::vector<VkSemaphore> signalSemaphores;
|
|
signalSemaphores.push_back(m_vkTimelineSemaphore);
|
|
submitInfo.signalSemaphoreCount = (uint32_t)signalSemaphores.size();
|
|
submitInfo.pSignalSemaphores = signalSemaphores.data();
|
|
|
|
VkTimelineSemaphoreSubmitInfo timelineInfo = {};
|
|
timelineInfo.sType = VK_STRUCTURE_TYPE_TIMELINE_SEMAPHORE_SUBMIT_INFO;
|
|
timelineInfo.waitSemaphoreValueCount = 1;
|
|
timelineInfo.pWaitSemaphoreValues = &waitValue;
|
|
timelineInfo.signalSemaphoreValueCount = 1;
|
|
timelineInfo.pSignalSemaphoreValues = &signalValue;
|
|
|
|
submitInfo.pNext = &timelineInfo;
|
|
|
|
if (vkQueueSubmit(m_graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE) !=
|
|
VK_SUCCESS) {
|
|
throw std::runtime_error("failed to submit draw command buffer!");
|
|
}
|
|
|
|
VkPresentInfoKHR presentInfo = {};
|
|
presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
|
|
presentInfo.waitSemaphoreCount = 1;
|
|
presentInfo.pWaitSemaphores = &m_vkPresentationSemaphore;
|
|
|
|
VkSwapchainKHR swapChains[] = {m_swapChain};
|
|
presentInfo.swapchainCount = 1;
|
|
presentInfo.pSwapchains = swapChains;
|
|
presentInfo.pImageIndices = &imageIndex;
|
|
|
|
result = vkQueuePresentKHR(m_presentQueue, &presentInfo);
|
|
if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR ||
|
|
m_framebufferResized) {
|
|
recreateSwapChain();
|
|
m_framebufferResized = false;
|
|
} else if (result != VK_SUCCESS) {
|
|
throw std::runtime_error("Failed to acquire swap chain image!");
|
|
}
|
|
|
|
m_currentFrame++;
|
|
|
|
waitValue += 2;
|
|
signalValue += 2;
|
|
}
|
|
#else
|
|
void VulkanBaseApp::drawFrame() {
|
|
size_t currentFrameIdx = m_currentFrame % MAX_FRAMES_IN_FLIGHT;
|
|
vkWaitForFences(m_device, 1, &m_inFlightFences[currentFrameIdx], VK_TRUE,
|
|
std::numeric_limits<uint64_t>::max());
|
|
|
|
uint32_t imageIndex;
|
|
VkResult result = vkAcquireNextImageKHR(
|
|
m_device, m_swapChain, std::numeric_limits<uint64_t>::max(),
|
|
m_imageAvailableSemaphores[currentFrameIdx], VK_NULL_HANDLE, &imageIndex);
|
|
if (result == VK_ERROR_OUT_OF_DATE_KHR) {
|
|
recreateSwapChain();
|
|
} else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) {
|
|
throw std::runtime_error("Failed to acquire swap chain image!");
|
|
}
|
|
|
|
updateUniformBuffer(imageIndex);
|
|
|
|
VkSubmitInfo submitInfo = {};
|
|
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
|
|
|
std::vector<VkSemaphore> waitSemaphores;
|
|
std::vector<VkPipelineStageFlags> waitStages;
|
|
|
|
waitSemaphores.push_back(m_imageAvailableSemaphores[currentFrameIdx]);
|
|
waitStages.push_back(VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT);
|
|
getWaitFrameSemaphores(waitSemaphores, waitStages);
|
|
|
|
submitInfo.waitSemaphoreCount = (uint32_t)waitSemaphores.size();
|
|
submitInfo.pWaitSemaphores = waitSemaphores.data();
|
|
submitInfo.pWaitDstStageMask = waitStages.data();
|
|
|
|
submitInfo.commandBufferCount = 1;
|
|
submitInfo.pCommandBuffers = &m_commandBuffers[imageIndex];
|
|
|
|
std::vector<VkSemaphore> signalSemaphores;
|
|
getSignalFrameSemaphores(signalSemaphores);
|
|
signalSemaphores.push_back(m_renderFinishedSemaphores[currentFrameIdx]);
|
|
submitInfo.signalSemaphoreCount = (uint32_t)signalSemaphores.size();
|
|
submitInfo.pSignalSemaphores = signalSemaphores.data();
|
|
|
|
vkResetFences(m_device, 1, &m_inFlightFences[currentFrameIdx]);
|
|
|
|
if (vkQueueSubmit(m_graphicsQueue, 1, &submitInfo,
|
|
m_inFlightFences[currentFrameIdx]) != VK_SUCCESS) {
|
|
throw std::runtime_error("failed to submit draw command buffer!");
|
|
}
|
|
|
|
VkPresentInfoKHR presentInfo = {};
|
|
presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
|
|
presentInfo.waitSemaphoreCount = 1;
|
|
presentInfo.pWaitSemaphores = &m_renderFinishedSemaphores[currentFrameIdx];
|
|
|
|
VkSwapchainKHR swapChains[] = {m_swapChain};
|
|
presentInfo.swapchainCount = 1;
|
|
presentInfo.pSwapchains = swapChains;
|
|
presentInfo.pImageIndices = &imageIndex;
|
|
|
|
result = vkQueuePresentKHR(m_presentQueue, &presentInfo);
|
|
if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR ||
|
|
m_framebufferResized) {
|
|
recreateSwapChain();
|
|
m_framebufferResized = false;
|
|
} else if (result != VK_SUCCESS) {
|
|
throw std::runtime_error("Failed to acquire swap chain image!");
|
|
}
|
|
|
|
m_currentFrame++;
|
|
}
|
|
#endif /* _VK_TIMELINE_SEMAPHORE */
|
|
|
|
void VulkanBaseApp::cleanupSwapChain() {
|
|
if (m_depthImageView != VK_NULL_HANDLE) {
|
|
vkDestroyImageView(m_device, m_depthImageView, nullptr);
|
|
}
|
|
if (m_depthImage != VK_NULL_HANDLE) {
|
|
vkDestroyImage(m_device, m_depthImage, nullptr);
|
|
}
|
|
if (m_depthImageMemory != VK_NULL_HANDLE) {
|
|
vkFreeMemory(m_device, m_depthImageMemory, nullptr);
|
|
}
|
|
|
|
for (size_t i = 0; i < m_uniformBuffers.size(); i++) {
|
|
vkDestroyBuffer(m_device, m_uniformBuffers[i], nullptr);
|
|
vkFreeMemory(m_device, m_uniformMemory[i], nullptr);
|
|
}
|
|
|
|
if (m_descriptorPool != VK_NULL_HANDLE) {
|
|
vkDestroyDescriptorPool(m_device, m_descriptorPool, nullptr);
|
|
}
|
|
|
|
for (size_t i = 0; i < m_swapChainFramebuffers.size(); i++) {
|
|
vkDestroyFramebuffer(m_device, m_swapChainFramebuffers[i], nullptr);
|
|
}
|
|
|
|
if (m_graphicsPipeline != VK_NULL_HANDLE) {
|
|
vkDestroyPipeline(m_device, m_graphicsPipeline, nullptr);
|
|
}
|
|
|
|
if (m_pipelineLayout != VK_NULL_HANDLE) {
|
|
vkDestroyPipelineLayout(m_device, m_pipelineLayout, nullptr);
|
|
}
|
|
|
|
if (m_renderPass != VK_NULL_HANDLE) {
|
|
vkDestroyRenderPass(m_device, m_renderPass, nullptr);
|
|
}
|
|
|
|
for (size_t i = 0; i < m_swapChainImageViews.size(); i++) {
|
|
vkDestroyImageView(m_device, m_swapChainImageViews[i], nullptr);
|
|
}
|
|
|
|
if (m_swapChain != VK_NULL_HANDLE) {
|
|
vkDestroySwapchainKHR(m_device, m_swapChain, nullptr);
|
|
}
|
|
}
|
|
|
|
void VulkanBaseApp::recreateSwapChain() {
|
|
int width, height;
|
|
|
|
glfwGetFramebufferSize(m_window, &width, &height);
|
|
while (width == 0 || height == 0) {
|
|
glfwWaitEvents();
|
|
glfwGetFramebufferSize(m_window, &width, &height);
|
|
}
|
|
|
|
vkDeviceWaitIdle(m_device);
|
|
|
|
cleanupSwapChain();
|
|
|
|
createSwapChain();
|
|
createImageViews();
|
|
createRenderPass();
|
|
createGraphicsPipeline();
|
|
createDepthResources();
|
|
createFramebuffers();
|
|
createUniformBuffers();
|
|
createDescriptorPool();
|
|
createDescriptorSets();
|
|
createCommandBuffers();
|
|
}
|
|
|
|
void VulkanBaseApp::mainLoop() {
|
|
while (!glfwWindowShouldClose(m_window)) {
|
|
glfwPollEvents();
|
|
drawFrame();
|
|
}
|
|
vkDeviceWaitIdle(m_device);
|
|
}
|
|
|
|
void readFile(std::istream &s, std::vector<char> &data) {
|
|
s.seekg(0, std::ios_base::end);
|
|
data.resize(s.tellg());
|
|
s.clear();
|
|
s.seekg(0, std::ios_base::beg);
|
|
s.read(data.data(), data.size());
|
|
}
|