mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-25 12:29:17 +08:00
83 lines
3.2 KiB
C++
83 lines
3.2 KiB
C++
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* Computation of Gerschgorin interval for symmetric, tridiagonal matrix */
|
|
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cmath>
|
|
#include <cfloat>
|
|
|
|
#include "util.h"
|
|
#include "gerschgorin.h"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//! Compute Gerschgorin interval for symmetric, tridiagonal matrix
|
|
//! @param d diagonal elements
|
|
//! @param s superdiagonal elements
|
|
//! @param n size of matrix
|
|
//! @param lg lower limit of Gerschgorin interval
|
|
//! @param ug upper limit of Gerschgorin interval
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void computeGerschgorin(float *d, float *s, unsigned int n, float &lg,
|
|
float &ug) {
|
|
lg = FLT_MAX;
|
|
ug = -FLT_MAX;
|
|
|
|
// compute bounds
|
|
for (unsigned int i = 1; i < (n - 1); ++i) {
|
|
// sum over the absolute values of all elements of row i
|
|
float sum_abs_ni = fabsf(s[i - 1]) + fabsf(s[i]);
|
|
|
|
lg = min(lg, d[i] - sum_abs_ni);
|
|
ug = max(ug, d[i] + sum_abs_ni);
|
|
}
|
|
|
|
// first and last row, only one superdiagonal element
|
|
|
|
// first row
|
|
lg = min(lg, d[0] - fabsf(s[0]));
|
|
ug = max(ug, d[0] + fabsf(s[0]));
|
|
|
|
// last row
|
|
lg = min(lg, d[n - 1] - fabsf(s[n - 2]));
|
|
ug = max(ug, d[n - 1] + fabsf(s[n - 2]));
|
|
|
|
// increase interval to avoid side effects of fp arithmetic
|
|
float bnorm = max(fabsf(ug), fabsf(lg));
|
|
|
|
// these values depend on the implementation of floating count that is
|
|
// employed in the following
|
|
float psi_0 = 11 * FLT_EPSILON * bnorm;
|
|
float psi_n = 11 * FLT_EPSILON * bnorm;
|
|
|
|
lg = lg - bnorm * 2 * n * FLT_EPSILON - psi_0;
|
|
ug = ug + bnorm * 2 * n * FLT_EPSILON + psi_n;
|
|
|
|
ug = max(lg, ug);
|
|
}
|