mirror of
				https://github.com/NVIDIA/cuda-samples.git
				synced 2025-10-31 19:47:48 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			113 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			113 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| /* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  *  * Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  *  * Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  *  * Neither the name of NVIDIA CORPORATION nor the names of its
 | |
|  *    contributors may be used to endorse or promote products derived
 | |
|  *    from this software without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
 | |
|  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 | |
|  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 | |
|  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 | |
|  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 | |
|  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 | |
|  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 | |
|  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
|  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
|  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This sample demonstrates two adaptive image denoising techniques:
 | |
|  * KNN and NLM, based on computation of both geometric and color distance
 | |
|  * between texels. While both techniques are already implemented in the
 | |
|  * DirectX SDK using shaders, massively speeded up variation
 | |
|  * of the latter technique, taking advantage of shared memory, is implemented
 | |
|  * in addition to DirectX counterparts.
 | |
|  * See supplied whitepaper for more explanations.
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <helper_cuda.h>
 | |
| #include "imageDenoising.h"
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // Helper functions
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| float Max(float x, float y) { return (x > y) ? x : y; }
 | |
| 
 | |
| float Min(float x, float y) { return (x < y) ? x : y; }
 | |
| 
 | |
| int iDivUp(int a, int b) { return ((a % b) != 0) ? (a / b + 1) : (a / b); }
 | |
| 
 | |
| __device__ float lerpf(float a, float b, float c) { return a + (b - a) * c; }
 | |
| 
 | |
| __device__ float vecLen(float4 a, float4 b) {
 | |
|   return ((b.x - a.x) * (b.x - a.x) + (b.y - a.y) * (b.y - a.y) +
 | |
|           (b.z - a.z) * (b.z - a.z));
 | |
| }
 | |
| 
 | |
| __device__ TColor make_color(float r, float g, float b, float a) {
 | |
|   return ((int)(a * 255.0f) << 24) | ((int)(b * 255.0f) << 16) |
 | |
|          ((int)(g * 255.0f) << 8) | ((int)(r * 255.0f) << 0);
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // Global data handlers and parameters
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // Texture object and channel descriptor for image texture
 | |
| cudaTextureObject_t texImage;
 | |
| cudaChannelFormatDesc uchar4tex = cudaCreateChannelDesc<uchar4>();
 | |
| 
 | |
| // CUDA array descriptor
 | |
| cudaArray *a_Src;
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // Filtering kernels
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| #include "imageDenoising_copy_kernel.cuh"
 | |
| #include "imageDenoising_knn_kernel.cuh"
 | |
| #include "imageDenoising_nlm_kernel.cuh"
 | |
| #include "imageDenoising_nlm2_kernel.cuh"
 | |
| 
 | |
| extern "C" cudaError_t CUDA_MallocArray(uchar4 **h_Src, int imageW,
 | |
|                                         int imageH) {
 | |
|   cudaError_t error;
 | |
| 
 | |
|   error = cudaMallocArray(&a_Src, &uchar4tex, imageW, imageH);
 | |
|   error = cudaMemcpy2DToArray(a_Src, 0, 0, *h_Src, sizeof(uchar4) * imageW,
 | |
|                               sizeof(uchar4) * imageW, imageH,
 | |
|                               cudaMemcpyHostToDevice);
 | |
| 
 | |
|   cudaResourceDesc texRes;
 | |
|   memset(&texRes, 0, sizeof(cudaResourceDesc));
 | |
| 
 | |
|   texRes.resType = cudaResourceTypeArray;
 | |
|   texRes.res.array.array = a_Src;
 | |
| 
 | |
|   cudaTextureDesc texDescr;
 | |
|   memset(&texDescr, 0, sizeof(cudaTextureDesc));
 | |
| 
 | |
|   texDescr.normalizedCoords = false;
 | |
|   texDescr.filterMode = cudaFilterModeLinear;
 | |
|   texDescr.addressMode[0] = cudaAddressModeWrap;
 | |
|   texDescr.addressMode[1] = cudaAddressModeWrap;
 | |
|   texDescr.readMode = cudaReadModeNormalizedFloat;
 | |
| 
 | |
|   checkCudaErrors(cudaCreateTextureObject(&texImage, &texRes, &texDescr, NULL));
 | |
| 
 | |
|   return error;
 | |
| }
 | |
| 
 | |
| extern "C" cudaError_t CUDA_FreeArray() { return cudaFreeArray(a_Src); }
 |