mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-12-01 13:29:15 +08:00
127 lines
4.7 KiB
C++
127 lines
4.7 KiB
C++
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
#include "binomialOptions_common.h"
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Polynomial approximation of cumulative normal distribution function
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
static double CND(double d) {
|
|
const double A1 = 0.31938153;
|
|
const double A2 = -0.356563782;
|
|
const double A3 = 1.781477937;
|
|
const double A4 = -1.821255978;
|
|
const double A5 = 1.330274429;
|
|
const double RSQRT2PI = 0.39894228040143267793994605993438;
|
|
|
|
double K = 1.0 / (1.0 + 0.2316419 * fabs(d));
|
|
|
|
double cnd = RSQRT2PI * exp(-0.5 * d * d) *
|
|
(K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5)))));
|
|
|
|
if (d > 0) cnd = 1.0 - cnd;
|
|
|
|
return cnd;
|
|
}
|
|
|
|
extern "C" void BlackScholesCall(float &callResult, TOptionData optionData) {
|
|
double S = optionData.S;
|
|
double X = optionData.X;
|
|
double T = optionData.T;
|
|
double R = optionData.R;
|
|
double V = optionData.V;
|
|
double sqrtT = sqrt(T);
|
|
|
|
double d1 = (log(S / X) + (R + 0.5 * V * V) * T) / (V * sqrtT);
|
|
double d2 = d1 - V * sqrtT;
|
|
|
|
double CNDD1 = CND(d1);
|
|
double CNDD2 = CND(d2);
|
|
|
|
// Calculate Call and Put simultaneously
|
|
double expRT = exp(-R * T);
|
|
|
|
callResult = (float)(S * CNDD1 - X * expRT * CNDD2);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Process an array of OptN options on CPU
|
|
// Note that CPU code is for correctness testing only and not for benchmarking.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static double expiryCallValue(double S, double X, double vDt, int i) {
|
|
double d = S * exp(vDt * (2.0 * i - NUM_STEPS)) - X;
|
|
return (d > 0) ? d : 0;
|
|
}
|
|
|
|
extern "C" void binomialOptionsCPU(float &callResult, TOptionData optionData) {
|
|
static double Call[NUM_STEPS + 1];
|
|
const double S = optionData.S;
|
|
const double X = optionData.X;
|
|
const double T = optionData.T;
|
|
const double R = optionData.R;
|
|
const double V = optionData.V;
|
|
|
|
const double dt = T / (double)NUM_STEPS;
|
|
const double vDt = V * sqrt(dt);
|
|
const double rDt = R * dt;
|
|
|
|
// Per-step interest and discount factors
|
|
const double If = exp(rDt);
|
|
const double Df = exp(-rDt);
|
|
|
|
// Values and pseudoprobabilities of upward and downward moves
|
|
const double u = exp(vDt);
|
|
const double d = exp(-vDt);
|
|
const double pu = (If - d) / (u - d);
|
|
const double pd = 1.0 - pu;
|
|
const double puByDf = pu * Df;
|
|
const double pdByDf = pd * Df;
|
|
|
|
///////////////////////////////////////////////////////////////////////
|
|
// Compute values at expiration date:
|
|
// call option value at period end is V(T) = S(T) - X
|
|
// if S(T) is greater than X, or zero otherwise.
|
|
// The computation is similar for put options.
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
for (int i = 0; i <= NUM_STEPS; i++) Call[i] = expiryCallValue(S, X, vDt, i);
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// Walk backwards up binomial tree
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
for (int i = NUM_STEPS; i > 0; i--)
|
|
for (int j = 0; j <= i - 1; j++)
|
|
Call[j] = puByDf * Call[j + 1] + pdByDf * Call[j];
|
|
|
|
callResult = (float)Call[0];
|
|
}
|