mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 22:05:49 +08:00
401 lines
15 KiB
Plaintext
401 lines
15 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* Example showing the use of CUFFT for fast 1D-convolution using FFT. */
|
|
|
|
// System includes
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
// CUDA runtime
|
|
#include <cuda_runtime.h>
|
|
|
|
//CUFFT Header file
|
|
#include <cufftXt.h>
|
|
|
|
// helper functions and utilities to work with CUDA
|
|
#include <helper_functions.h>
|
|
#include <helper_cuda.h>
|
|
|
|
// Complex data type
|
|
typedef float2 Complex;
|
|
|
|
static __device__ __host__ inline Complex ComplexAdd(Complex, Complex);
|
|
static __device__ __host__ inline Complex ComplexScale(Complex, float);
|
|
static __device__ __host__ inline Complex ComplexMul(Complex, Complex);
|
|
static __global__ void ComplexPointwiseMulAndScale(cufftComplex *,
|
|
cufftComplex *, int, float);
|
|
|
|
// Kernel for GPU
|
|
void multiplyCoefficient(cudaLibXtDesc *, cudaLibXtDesc *, int, float, int);
|
|
|
|
// Filtering functions
|
|
void Convolve(const Complex *, int, const Complex *, int, Complex *);
|
|
|
|
// Padding functions
|
|
int PadData(const Complex *, Complex **, int, const Complex *, Complex **, int);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Data configuration
|
|
// The filter size is assumed to be a number smaller than the signal size
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
const int SIGNAL_SIZE = 1018;
|
|
const int FILTER_KERNEL_SIZE = 11;
|
|
const int GPU_COUNT = 2;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Program main
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
int main(int argc, char **argv) {
|
|
printf("\n[simpleCUFFT_MGPU] is starting...\n\n");
|
|
|
|
int GPU_N;
|
|
checkCudaErrors(cudaGetDeviceCount(&GPU_N));
|
|
|
|
if (GPU_N < GPU_COUNT) {
|
|
printf("No. of GPU on node %d\n", GPU_N);
|
|
printf("Two GPUs are required to run simpleCUFFT_MGPU sample code\n");
|
|
exit(EXIT_WAIVED);
|
|
}
|
|
|
|
int *major_minor = (int *)malloc(sizeof(int) * GPU_N * 2);
|
|
int found2IdenticalGPUs = 0;
|
|
int nGPUs = 2;
|
|
int *whichGPUs;
|
|
whichGPUs = (int *)malloc(sizeof(int) * nGPUs);
|
|
|
|
for (int i = 0; i < GPU_N; i++) {
|
|
cudaDeviceProp deviceProp;
|
|
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, i));
|
|
major_minor[i * 2] = deviceProp.major;
|
|
major_minor[i * 2 + 1] = deviceProp.minor;
|
|
printf("GPU Device %d: \"%s\" with compute capability %d.%d\n", i,
|
|
deviceProp.name, deviceProp.major, deviceProp.minor);
|
|
}
|
|
|
|
for (int i = 0; i < GPU_N; i++) {
|
|
for (int j = i + 1; j < GPU_N; j++) {
|
|
if ((major_minor[i * 2] == major_minor[j * 2]) &&
|
|
(major_minor[i * 2 + 1] == major_minor[j * 2 + 1])) {
|
|
whichGPUs[0] = i;
|
|
whichGPUs[1] = j;
|
|
found2IdenticalGPUs = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (found2IdenticalGPUs) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
free(major_minor);
|
|
if (!found2IdenticalGPUs) {
|
|
printf(
|
|
"No Two GPUs with same architecture found\nWaiving simpleCUFFT_2d_MGPU "
|
|
"sample\n");
|
|
exit(EXIT_WAIVED);
|
|
}
|
|
|
|
// Allocate host memory for the signal
|
|
Complex *h_signal = (Complex *)malloc(sizeof(Complex) * SIGNAL_SIZE);
|
|
|
|
// Initialize the memory for the signal
|
|
for (int i = 0; i < SIGNAL_SIZE; ++i) {
|
|
h_signal[i].x = rand() / (float)RAND_MAX;
|
|
h_signal[i].y = 0;
|
|
}
|
|
|
|
// Allocate host memory for the filter
|
|
Complex *h_filter_kernel =
|
|
(Complex *)malloc(sizeof(Complex) * FILTER_KERNEL_SIZE);
|
|
|
|
// Initialize the memory for the filter
|
|
for (int i = 0; i < FILTER_KERNEL_SIZE; ++i) {
|
|
h_filter_kernel[i].x = rand() / (float)RAND_MAX;
|
|
h_filter_kernel[i].y = 0;
|
|
}
|
|
|
|
// Pad signal and filter kernel
|
|
Complex *h_padded_signal;
|
|
Complex *h_padded_filter_kernel;
|
|
int new_size =
|
|
PadData(h_signal, &h_padded_signal, SIGNAL_SIZE, h_filter_kernel,
|
|
&h_padded_filter_kernel, FILTER_KERNEL_SIZE);
|
|
|
|
// cufftCreate() - Create an empty plan
|
|
cufftResult result;
|
|
cufftHandle plan_input;
|
|
checkCudaErrors(cufftCreate(&plan_input));
|
|
|
|
// cufftXtSetGPUs() - Define which GPUs to use
|
|
result = cufftXtSetGPUs(plan_input, nGPUs, whichGPUs);
|
|
|
|
if (result == CUFFT_INVALID_DEVICE) {
|
|
printf("This sample requires two GPUs on the same board.\n");
|
|
printf("No such board was found. Waiving sample.\n");
|
|
exit(EXIT_WAIVED);
|
|
} else if (result != CUFFT_SUCCESS) {
|
|
printf("cufftXtSetGPUs failed\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
// Print the device information to run the code
|
|
printf("\nRunning on GPUs\n");
|
|
for (int i = 0; i < nGPUs; i++) {
|
|
cudaDeviceProp deviceProp;
|
|
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, whichGPUs[i]));
|
|
printf("GPU Device %d: \"%s\" with compute capability %d.%d\n",
|
|
whichGPUs[i], deviceProp.name, deviceProp.major, deviceProp.minor);
|
|
}
|
|
|
|
size_t *worksize;
|
|
worksize = (size_t *)malloc(sizeof(size_t) * nGPUs);
|
|
|
|
// cufftMakePlan1d() - Create the plan
|
|
checkCudaErrors(
|
|
cufftMakePlan1d(plan_input, new_size, CUFFT_C2C, 1, worksize));
|
|
|
|
// cufftXtMalloc() - Malloc data on multiple GPUs
|
|
cudaLibXtDesc *d_signal;
|
|
checkCudaErrors(cufftXtMalloc(plan_input, (cudaLibXtDesc **)&d_signal,
|
|
CUFFT_XT_FORMAT_INPLACE));
|
|
cudaLibXtDesc *d_out_signal;
|
|
checkCudaErrors(cufftXtMalloc(plan_input, (cudaLibXtDesc **)&d_out_signal,
|
|
CUFFT_XT_FORMAT_INPLACE));
|
|
cudaLibXtDesc *d_filter_kernel;
|
|
checkCudaErrors(cufftXtMalloc(plan_input, (cudaLibXtDesc **)&d_filter_kernel,
|
|
CUFFT_XT_FORMAT_INPLACE));
|
|
cudaLibXtDesc *d_out_filter_kernel;
|
|
checkCudaErrors(cufftXtMalloc(plan_input,
|
|
(cudaLibXtDesc **)&d_out_filter_kernel,
|
|
CUFFT_XT_FORMAT_INPLACE));
|
|
|
|
// cufftXtMemcpy() - Copy data from host to multiple GPUs
|
|
checkCudaErrors(cufftXtMemcpy(plan_input, d_signal, h_padded_signal,
|
|
CUFFT_COPY_HOST_TO_DEVICE));
|
|
checkCudaErrors(cufftXtMemcpy(plan_input, d_filter_kernel,
|
|
h_padded_filter_kernel,
|
|
CUFFT_COPY_HOST_TO_DEVICE));
|
|
|
|
// cufftXtExecDescriptorC2C() - Execute FFT on data on multiple GPUs
|
|
checkCudaErrors(
|
|
cufftXtExecDescriptorC2C(plan_input, d_signal, d_signal, CUFFT_FORWARD));
|
|
checkCudaErrors(cufftXtExecDescriptorC2C(plan_input, d_filter_kernel,
|
|
d_filter_kernel, CUFFT_FORWARD));
|
|
|
|
// cufftXtMemcpy() - Copy the data to natural order on GPUs
|
|
checkCudaErrors(cufftXtMemcpy(plan_input, d_out_signal, d_signal,
|
|
CUFFT_COPY_DEVICE_TO_DEVICE));
|
|
checkCudaErrors(cufftXtMemcpy(plan_input, d_out_filter_kernel,
|
|
d_filter_kernel, CUFFT_COPY_DEVICE_TO_DEVICE));
|
|
|
|
printf("\n\nValue of Library Descriptor\n");
|
|
printf("Number of GPUs %d\n", d_out_signal->descriptor->nGPUs);
|
|
printf("Device id %d %d\n", d_out_signal->descriptor->GPUs[0],
|
|
d_out_signal->descriptor->GPUs[1]);
|
|
printf("Data size on GPU %ld %ld\n",
|
|
(long)(d_out_signal->descriptor->size[0] / sizeof(cufftComplex)),
|
|
(long)(d_out_signal->descriptor->size[1] / sizeof(cufftComplex)));
|
|
|
|
// Multiply the coefficients together and normalize the result
|
|
printf("Launching ComplexPointwiseMulAndScale<<< >>>\n");
|
|
multiplyCoefficient(d_out_signal, d_out_filter_kernel, new_size,
|
|
1.0f / new_size, nGPUs);
|
|
|
|
// cufftXtExecDescriptorC2C() - Execute inverse FFT on data on multiple GPUs
|
|
printf("Transforming signal back cufftExecC2C\n");
|
|
checkCudaErrors(cufftXtExecDescriptorC2C(plan_input, d_out_signal,
|
|
d_out_signal, CUFFT_INVERSE));
|
|
|
|
// Create host pointer pointing to padded signal
|
|
Complex *h_convolved_signal = h_padded_signal;
|
|
|
|
// Allocate host memory for the convolution result
|
|
Complex *h_convolved_signal_ref =
|
|
(Complex *)malloc(sizeof(Complex) * SIGNAL_SIZE);
|
|
|
|
// cufftXtMemcpy() - Copy data from multiple GPUs to host
|
|
checkCudaErrors(cufftXtMemcpy(plan_input, h_convolved_signal, d_out_signal,
|
|
CUFFT_COPY_DEVICE_TO_HOST));
|
|
|
|
// Convolve on the host
|
|
Convolve(h_signal, SIGNAL_SIZE, h_filter_kernel, FILTER_KERNEL_SIZE,
|
|
h_convolved_signal_ref);
|
|
|
|
// Compare CPU and GPU result
|
|
bool bTestResult =
|
|
sdkCompareL2fe((float *)h_convolved_signal_ref,
|
|
(float *)h_convolved_signal, 2 * SIGNAL_SIZE, 1e-5f);
|
|
printf("\nvalue of TestResult %d\n", bTestResult);
|
|
|
|
// Cleanup memory
|
|
free(whichGPUs);
|
|
free(worksize);
|
|
free(h_signal);
|
|
free(h_filter_kernel);
|
|
free(h_padded_signal);
|
|
free(h_padded_filter_kernel);
|
|
free(h_convolved_signal_ref);
|
|
|
|
// cudaXtFree() - Free GPU memory
|
|
checkCudaErrors(cufftXtFree(d_signal));
|
|
checkCudaErrors(cufftXtFree(d_filter_kernel));
|
|
checkCudaErrors(cufftXtFree(d_out_signal));
|
|
checkCudaErrors(cufftXtFree(d_out_filter_kernel));
|
|
|
|
// cufftDestroy() - Destroy FFT plan
|
|
checkCudaErrors(cufftDestroy(plan_input));
|
|
|
|
exit(bTestResult ? EXIT_SUCCESS : EXIT_FAILURE);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////
|
|
// Function for padding original data
|
|
//////////////////////////////////////////////////////////////////////////////////
|
|
int PadData(const Complex *signal, Complex **padded_signal, int signal_size,
|
|
const Complex *filter_kernel, Complex **padded_filter_kernel,
|
|
int filter_kernel_size) {
|
|
int minRadius = filter_kernel_size / 2;
|
|
int maxRadius = filter_kernel_size - minRadius;
|
|
int new_size = signal_size + maxRadius;
|
|
|
|
// Pad signal
|
|
Complex *new_data = (Complex *)malloc(sizeof(Complex) * new_size);
|
|
memcpy(new_data + 0, signal, signal_size * sizeof(Complex));
|
|
memset(new_data + signal_size, 0, (new_size - signal_size) * sizeof(Complex));
|
|
*padded_signal = new_data;
|
|
|
|
// Pad filter
|
|
new_data = (Complex *)malloc(sizeof(Complex) * new_size);
|
|
memcpy(new_data + 0, filter_kernel + minRadius, maxRadius * sizeof(Complex));
|
|
memset(new_data + maxRadius, 0,
|
|
(new_size - filter_kernel_size) * sizeof(Complex));
|
|
memcpy(new_data + new_size - minRadius, filter_kernel,
|
|
minRadius * sizeof(Complex));
|
|
*padded_filter_kernel = new_data;
|
|
|
|
return new_size;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Filtering operations - Computing Convolution on the host
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void Convolve(const Complex *signal, int signal_size,
|
|
const Complex *filter_kernel, int filter_kernel_size,
|
|
Complex *filtered_signal) {
|
|
int minRadius = filter_kernel_size / 2;
|
|
int maxRadius = filter_kernel_size - minRadius;
|
|
|
|
// Loop over output element indices
|
|
for (int i = 0; i < signal_size; ++i) {
|
|
filtered_signal[i].x = filtered_signal[i].y = 0;
|
|
|
|
// Loop over convolution indices
|
|
for (int j = -maxRadius + 1; j <= minRadius; ++j) {
|
|
int k = i + j;
|
|
|
|
if (k >= 0 && k < signal_size) {
|
|
filtered_signal[i] =
|
|
ComplexAdd(filtered_signal[i],
|
|
ComplexMul(signal[k], filter_kernel[minRadius - j]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Launch Kernel on multiple GPU
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void multiplyCoefficient(cudaLibXtDesc *d_signal,
|
|
cudaLibXtDesc *d_filter_kernel, int new_size,
|
|
float val, int nGPUs) {
|
|
int device;
|
|
// Launch the ComplexPointwiseMulAndScale<<< >>> kernel on multiple GPU
|
|
for (int i = 0; i < nGPUs; i++) {
|
|
device = d_signal->descriptor->GPUs[i];
|
|
|
|
// Set device
|
|
checkCudaErrors(cudaSetDevice(device));
|
|
|
|
// Perform GPU computations
|
|
ComplexPointwiseMulAndScale<<<32, 256>>>(
|
|
(cufftComplex *)d_signal->descriptor->data[i],
|
|
(cufftComplex *)d_filter_kernel->descriptor->data[i],
|
|
int(d_signal->descriptor->size[i] / sizeof(cufftComplex)), val);
|
|
}
|
|
|
|
// Wait for device to finish all operation
|
|
for (int i = 0; i < nGPUs; i++) {
|
|
device = d_signal->descriptor->GPUs[i];
|
|
checkCudaErrors(cudaSetDevice(device));
|
|
cudaDeviceSynchronize();
|
|
// Check if kernel execution generated and error
|
|
getLastCudaError("Kernel execution failed [ ComplexPointwiseMulAndScale ]");
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Complex operations
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Complex addition
|
|
static __device__ __host__ inline Complex ComplexAdd(Complex a, Complex b) {
|
|
Complex c;
|
|
c.x = a.x + b.x;
|
|
c.y = a.y + b.y;
|
|
return c;
|
|
}
|
|
|
|
// Complex scale
|
|
static __device__ __host__ inline Complex ComplexScale(Complex a, float s) {
|
|
Complex c;
|
|
c.x = s * a.x;
|
|
c.y = s * a.y;
|
|
return c;
|
|
}
|
|
|
|
// Complex multiplication
|
|
static __device__ __host__ inline Complex ComplexMul(Complex a, Complex b) {
|
|
Complex c;
|
|
c.x = a.x * b.x - a.y * b.y;
|
|
c.y = a.x * b.y + a.y * b.x;
|
|
return c;
|
|
}
|
|
// Complex pointwise multiplication
|
|
static __global__ void ComplexPointwiseMulAndScale(cufftComplex *a,
|
|
cufftComplex *b, int size,
|
|
float scale) {
|
|
const int numThreads = blockDim.x * gridDim.x;
|
|
const int threadID = blockIdx.x * blockDim.x + threadIdx.x;
|
|
for (int i = threadID; i < size; i += numThreads) {
|
|
a[i] = ComplexScale(ComplexMul(a[i], b[i]), scale);
|
|
}
|
|
}
|