mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 22:25:49 +08:00
429 lines
18 KiB
Plaintext
429 lines
18 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <iostream>
|
|
|
|
#include <cuda_runtime.h>
|
|
#include "cuda_consumer.h"
|
|
#include <helper_image.h>
|
|
#include "nvmedia_image_nvscibuf.h"
|
|
#include "nvmedia_utils/cmdline.h"
|
|
|
|
// Enable this to 1 if require cuda processed output to ppm file.
|
|
#define WRITE_OUTPUT_IMAGE 0
|
|
|
|
#define checkNvSciErrors(call) \
|
|
do { \
|
|
NvSciError _status = call; \
|
|
if (NvSciError_Success != _status) { \
|
|
printf( \
|
|
"NVSCI call in file '%s' in line %i returned" \
|
|
" %d, expected %d\n", \
|
|
__FILE__, __LINE__, _status, NvSciError_Success); \
|
|
fflush(stdout); \
|
|
exit(EXIT_FAILURE); \
|
|
} \
|
|
} while (0)
|
|
|
|
__global__ static void yuvToGrayscale(cudaSurfaceObject_t surfaceObject,
|
|
unsigned int *dstImage,
|
|
int32_t imageWidth, int32_t imageHeight) {
|
|
size_t x = blockIdx.x * blockDim.x + threadIdx.x;
|
|
size_t y = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
uchar4 *dstImageUchar4 = (uchar4 *)dstImage;
|
|
for (; x < imageWidth && y < imageHeight;
|
|
x += gridDim.x * blockDim.x, y += gridDim.y * blockDim.y) {
|
|
int colInBytes = x * sizeof(unsigned char);
|
|
unsigned char luma =
|
|
surf2Dread<unsigned char>(surfaceObject, colInBytes, y);
|
|
uchar4 grayscalePix = make_uchar4(luma, luma, luma, 0);
|
|
|
|
dstImageUchar4[y * imageWidth + x] = grayscalePix;
|
|
}
|
|
}
|
|
|
|
static void cudaImportNvSciSync(cudaExternalSemaphore_t &extSem,
|
|
NvSciSyncObj &syncObj) {
|
|
cudaExternalSemaphoreHandleDesc extSemDesc;
|
|
memset(&extSemDesc, 0, sizeof(extSemDesc));
|
|
extSemDesc.type = cudaExternalSemaphoreHandleTypeNvSciSync;
|
|
extSemDesc.handle.nvSciSyncObj = (void *)syncObj;
|
|
|
|
checkCudaErrors(cudaImportExternalSemaphore(&extSem, &extSemDesc));
|
|
}
|
|
|
|
static void waitExternalSemaphore(cudaExternalSemaphore_t &waitSem,
|
|
NvSciSyncFence *fence, cudaStream_t stream) {
|
|
cudaExternalSemaphoreWaitParams waitParams;
|
|
memset(&waitParams, 0, sizeof(waitParams));
|
|
// For cross-process signaler-waiter applications need to use NvSciIpc
|
|
// and NvSciSync[Export|Import] utilities to share the NvSciSyncFence
|
|
// across process. This step is optional in single-process.
|
|
waitParams.params.nvSciSync.fence = (void *)fence;
|
|
waitParams.flags = 0;
|
|
|
|
checkCudaErrors(
|
|
cudaWaitExternalSemaphoresAsync(&waitSem, &waitParams, 1, stream));
|
|
}
|
|
|
|
static void signalExternalSemaphore(cudaExternalSemaphore_t &signalSem,
|
|
NvSciSyncFence *fence,
|
|
cudaStream_t stream) {
|
|
cudaExternalSemaphoreSignalParams signalParams;
|
|
memset(&signalParams, 0, sizeof(signalParams));
|
|
// For cross-process signaler-waiter applications need to use NvSciIpc
|
|
// and NvSciSync[Export|Import] utilities to share the NvSciSyncFence
|
|
// across process. This step is optional in single-process.
|
|
signalParams.params.nvSciSync.fence = (void *)fence;
|
|
signalParams.flags = 0;
|
|
|
|
checkCudaErrors(
|
|
cudaSignalExternalSemaphoresAsync(&signalSem, &signalParams, 1, stream));
|
|
}
|
|
|
|
static void yuvToGrayscaleCudaKernel(cudaExternalResInterop &cudaExtResObj,
|
|
int32_t imageWidth, int32_t imageHeight) {
|
|
#if WRITE_OUTPUT_IMAGE
|
|
unsigned int *h_dstImage;
|
|
checkCudaErrors(cudaMallocHost(
|
|
&h_dstImage, sizeof(unsigned int) * imageHeight * imageWidth));
|
|
#endif
|
|
dim3 block(16, 16, 1);
|
|
dim3 grid((imageWidth / block.x) + 1, (imageHeight / block.y) + 1, 1);
|
|
|
|
yuvToGrayscale<<<grid, block, 0, cudaExtResObj.stream>>>(
|
|
cudaExtResObj.cudaSurfaceNvmediaBuf[0], cudaExtResObj.d_outputImage,
|
|
imageWidth, imageHeight);
|
|
|
|
#if WRITE_OUTPUT_IMAGE
|
|
checkCudaErrors(
|
|
cudaMemcpyAsync(h_dstImage, cudaExtResObj.d_outputImage,
|
|
sizeof(unsigned int) * imageHeight * imageWidth,
|
|
cudaMemcpyDeviceToHost, cudaExtResObj.stream));
|
|
checkCudaErrors(cudaStreamSynchronize(cudaExtResObj.stream));
|
|
char outputFilename[1024];
|
|
std::string image_filename = "Grayscale";
|
|
strcpy(outputFilename, image_filename.c_str());
|
|
strcpy(outputFilename + image_filename.length(), "_nvsci_out.ppm");
|
|
sdkSavePPM4ub(outputFilename, (unsigned char *)h_dstImage, imageWidth,
|
|
imageHeight);
|
|
printf("Wrote '%s'\n", outputFilename);
|
|
checkCudaErrors(cudaFreeHost(h_dstImage));
|
|
#endif
|
|
}
|
|
|
|
static void cudaImportNvSciImage(cudaExternalResInterop &cudaExtResObj,
|
|
NvSciBufObj &inputBufObj) {
|
|
NvSciBufModule module = NULL;
|
|
NvSciBufAttrList attrlist = NULL;
|
|
NvSciBufAttrKeyValuePair pairArrayOut[10];
|
|
|
|
checkNvSciErrors(NvSciBufModuleOpen(&module));
|
|
checkNvSciErrors(NvSciBufAttrListCreate(module, &attrlist));
|
|
checkNvSciErrors(NvSciBufObjGetAttrList(inputBufObj, &attrlist));
|
|
|
|
memset(pairArrayOut, 0, sizeof(NvSciBufAttrKeyValuePair) * 10);
|
|
|
|
int numAttrs = 0;
|
|
pairArrayOut[numAttrs++].key = NvSciBufImageAttrKey_Size;
|
|
pairArrayOut[numAttrs++].key = NvSciBufImageAttrKey_PlaneChannelCount;
|
|
pairArrayOut[numAttrs++].key = NvSciBufImageAttrKey_PlaneCount;
|
|
pairArrayOut[numAttrs++].key = NvSciBufImageAttrKey_PlaneWidth;
|
|
pairArrayOut[numAttrs++].key = NvSciBufImageAttrKey_PlaneHeight;
|
|
pairArrayOut[numAttrs++].key = NvSciBufImageAttrKey_Layout;
|
|
pairArrayOut[numAttrs++].key = NvSciBufImageAttrKey_PlaneBitsPerPixel;
|
|
pairArrayOut[numAttrs++].key = NvSciBufImageAttrKey_PlaneOffset;
|
|
|
|
checkNvSciErrors(NvSciBufAttrListGetAttrs(attrlist, pairArrayOut, numAttrs));
|
|
|
|
uint64_t size = *(uint64_t *)pairArrayOut[0].value;
|
|
uint8_t channelCount = *(uint8_t *)pairArrayOut[1].value;
|
|
cudaExtResObj.planeCount = *(int32_t *)pairArrayOut[2].value;
|
|
cudaExtResObj.imageWidth =
|
|
(int32_t *)malloc(sizeof(int32_t) * cudaExtResObj.planeCount);
|
|
cudaExtResObj.imageHeight =
|
|
(int32_t *)malloc(sizeof(int32_t) * cudaExtResObj.planeCount);
|
|
cudaExtResObj.planeOffset =
|
|
(uint64_t *)malloc(sizeof(uint64_t) * cudaExtResObj.planeCount);
|
|
|
|
memcpy(cudaExtResObj.imageWidth, (int32_t *)pairArrayOut[3].value,
|
|
cudaExtResObj.planeCount * sizeof(int32_t));
|
|
memcpy(cudaExtResObj.imageHeight, (int32_t *)pairArrayOut[4].value,
|
|
cudaExtResObj.planeCount * sizeof(int32_t));
|
|
memcpy(cudaExtResObj.planeOffset, (uint64_t *)pairArrayOut[7].value,
|
|
cudaExtResObj.planeCount * sizeof(uint64_t));
|
|
|
|
NvSciBufAttrValImageLayoutType layout =
|
|
*(NvSciBufAttrValImageLayoutType *)pairArrayOut[5].value;
|
|
uint32_t bitsPerPixel = *(uint32_t *)pairArrayOut[6].value;
|
|
|
|
if (layout != NvSciBufImage_BlockLinearType) {
|
|
printf("Image layout is not block linear.. waiving execution\n");
|
|
exit(EXIT_WAIVED);
|
|
}
|
|
|
|
cudaExternalMemoryHandleDesc memHandleDesc;
|
|
memset(&memHandleDesc, 0, sizeof(memHandleDesc));
|
|
memHandleDesc.type = cudaExternalMemoryHandleTypeNvSciBuf;
|
|
memHandleDesc.handle.nvSciBufObject = inputBufObj;
|
|
memHandleDesc.size = size;
|
|
checkCudaErrors(
|
|
cudaImportExternalMemory(&cudaExtResObj.extMemImageBuf, &memHandleDesc));
|
|
|
|
cudaExtResObj.d_mipmapArray = (cudaMipmappedArray_t *)malloc(
|
|
sizeof(cudaMipmappedArray_t) * cudaExtResObj.planeCount);
|
|
|
|
for (int i = 0; i < cudaExtResObj.planeCount; i++) {
|
|
cudaExtent extent = {};
|
|
memset(&extent, 0, sizeof(extent));
|
|
extent.width = cudaExtResObj.imageWidth[i];
|
|
extent.height = cudaExtResObj.imageHeight[i];
|
|
extent.depth = 0;
|
|
cudaChannelFormatDesc desc;
|
|
switch (channelCount) {
|
|
case 1:
|
|
default:
|
|
desc = cudaCreateChannelDesc(bitsPerPixel, 0, 0, 0,
|
|
cudaChannelFormatKindUnsigned);
|
|
break;
|
|
case 2:
|
|
desc = cudaCreateChannelDesc(bitsPerPixel, bitsPerPixel, 0, 0,
|
|
cudaChannelFormatKindUnsigned);
|
|
break;
|
|
case 3:
|
|
desc = cudaCreateChannelDesc(bitsPerPixel, bitsPerPixel, bitsPerPixel,
|
|
0, cudaChannelFormatKindUnsigned);
|
|
break;
|
|
case 4:
|
|
desc =
|
|
cudaCreateChannelDesc(bitsPerPixel, bitsPerPixel, bitsPerPixel,
|
|
bitsPerPixel, cudaChannelFormatKindUnsigned);
|
|
break;
|
|
}
|
|
|
|
cudaExternalMemoryMipmappedArrayDesc mipmapDesc = {0};
|
|
mipmapDesc.offset = cudaExtResObj.planeOffset[i];
|
|
mipmapDesc.formatDesc = desc;
|
|
mipmapDesc.extent = extent;
|
|
mipmapDesc.flags = 0;
|
|
mipmapDesc.numLevels = 1;
|
|
checkCudaErrors(cudaExternalMemoryGetMappedMipmappedArray(
|
|
&cudaExtResObj.d_mipmapArray[i], cudaExtResObj.extMemImageBuf,
|
|
&mipmapDesc));
|
|
}
|
|
}
|
|
|
|
static cudaSurfaceObject_t createCudaSurface(cudaArray_t &d_mipLevelArray) {
|
|
cudaResourceDesc resourceDesc;
|
|
memset(&resourceDesc, 0, sizeof(resourceDesc));
|
|
resourceDesc.resType = cudaResourceTypeArray;
|
|
resourceDesc.res.array.array = d_mipLevelArray;
|
|
|
|
cudaSurfaceObject_t surfaceObject;
|
|
checkCudaErrors(cudaCreateSurfaceObject(&surfaceObject, &resourceDesc));
|
|
return surfaceObject;
|
|
}
|
|
|
|
static cudaStream_t createCudaStream(int deviceId) {
|
|
checkCudaErrors(cudaSetDevice(deviceId));
|
|
cudaStream_t stream;
|
|
checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
|
|
return stream;
|
|
}
|
|
|
|
// CUDA setup buffers/synchronization objects for interop via NvSci API.
|
|
void setupCuda(cudaExternalResInterop &cudaExtResObj, NvSciBufObj &inputBufObj,
|
|
NvSciSyncObj &syncObj, NvSciSyncObj &cudaSignalerSyncObj,
|
|
int deviceId) {
|
|
checkCudaErrors(cudaSetDevice(deviceId));
|
|
cudaImportNvSciSync(cudaExtResObj.waitSem, syncObj);
|
|
cudaImportNvSciSync(cudaExtResObj.signalSem, cudaSignalerSyncObj);
|
|
|
|
cudaImportNvSciImage(cudaExtResObj, inputBufObj);
|
|
cudaExtResObj.d_mipLevelArray =
|
|
(cudaArray_t *)malloc(sizeof(cudaArray_t) * cudaExtResObj.planeCount);
|
|
cudaExtResObj.cudaSurfaceNvmediaBuf = (cudaSurfaceObject_t *)malloc(
|
|
sizeof(cudaSurfaceObject_t) * cudaExtResObj.planeCount);
|
|
|
|
for (int i = 0; i < cudaExtResObj.planeCount; ++i) {
|
|
uint32_t mipLevelId = 0;
|
|
checkCudaErrors(
|
|
cudaGetMipmappedArrayLevel(&cudaExtResObj.d_mipLevelArray[i],
|
|
cudaExtResObj.d_mipmapArray[i], mipLevelId));
|
|
cudaExtResObj.cudaSurfaceNvmediaBuf[i] =
|
|
createCudaSurface(cudaExtResObj.d_mipLevelArray[i]);
|
|
}
|
|
|
|
cudaExtResObj.stream = createCudaStream(deviceId);
|
|
checkCudaErrors(cudaMalloc(&cudaExtResObj.d_outputImage,
|
|
sizeof(unsigned int) *
|
|
cudaExtResObj.imageWidth[0] *
|
|
cudaExtResObj.imageHeight[0]));
|
|
}
|
|
|
|
// CUDA clean up buffers used **with** NvSci API.
|
|
void cleanupCuda(cudaExternalResInterop &cudaExtResObj) {
|
|
for (int i = 0; i < cudaExtResObj.planeCount; i++) {
|
|
checkCudaErrors(
|
|
cudaDestroySurfaceObject(cudaExtResObj.cudaSurfaceNvmediaBuf[i]));
|
|
checkCudaErrors(cudaFreeMipmappedArray(cudaExtResObj.d_mipmapArray[i]));
|
|
}
|
|
free(cudaExtResObj.d_mipmapArray);
|
|
free(cudaExtResObj.d_mipLevelArray);
|
|
free(cudaExtResObj.cudaSurfaceNvmediaBuf);
|
|
free(cudaExtResObj.imageWidth);
|
|
free(cudaExtResObj.imageHeight);
|
|
checkCudaErrors(cudaDestroyExternalSemaphore(cudaExtResObj.waitSem));
|
|
checkCudaErrors(cudaDestroyExternalSemaphore(cudaExtResObj.signalSem));
|
|
checkCudaErrors(cudaDestroyExternalMemory(cudaExtResObj.extMemImageBuf));
|
|
checkCudaErrors(cudaStreamDestroy(cudaExtResObj.stream));
|
|
checkCudaErrors(cudaFree(cudaExtResObj.d_outputImage));
|
|
}
|
|
|
|
void runCudaOperation(cudaExternalResInterop &cudaExtResObj,
|
|
NvSciSyncFence *cudaWaitFence,
|
|
NvSciSyncFence *cudaSignalFence, int deviceId,
|
|
int iterations) {
|
|
checkCudaErrors(cudaSetDevice(deviceId));
|
|
static int64_t launch = 0;
|
|
|
|
waitExternalSemaphore(cudaExtResObj.waitSem, cudaWaitFence,
|
|
cudaExtResObj.stream);
|
|
|
|
// run cuda kernel over surface object of the LUMA surface part to extract
|
|
// grayscale.
|
|
yuvToGrayscaleCudaKernel(cudaExtResObj, cudaExtResObj.imageWidth[0],
|
|
cudaExtResObj.imageHeight[0]);
|
|
|
|
// signal fence till the second last iterations for NvMedia2DBlit to wait for
|
|
// cuda signal and for final iteration as there is no corresponding NvMedia
|
|
// operation pending therefore we end with cudaStreamSynchronize()
|
|
if (launch < iterations - 1) {
|
|
signalExternalSemaphore(cudaExtResObj.signalSem, cudaSignalFence,
|
|
cudaExtResObj.stream);
|
|
} else {
|
|
checkCudaErrors(cudaStreamSynchronize(cudaExtResObj.stream));
|
|
}
|
|
launch++;
|
|
}
|
|
|
|
// CUDA imports and operates on NvSci buffer/synchronization objects
|
|
void setupCuda(Blit2DTest *ctx, cudaResources &cudaResObj, int deviceId) {
|
|
checkCudaErrors(cudaSetDevice(deviceId));
|
|
cudaResObj.d_yuvArray =
|
|
(cudaArray_t *)malloc(sizeof(cudaArray_t) * ctx->numSurfaces);
|
|
cudaResObj.cudaSurfaceNvmediaBuf = (cudaSurfaceObject_t *)malloc(
|
|
sizeof(cudaSurfaceObject_t) * ctx->numSurfaces);
|
|
cudaChannelFormatDesc channelDesc;
|
|
switch (ctx->bytesPerPixel) {
|
|
case 1:
|
|
default:
|
|
channelDesc =
|
|
cudaCreateChannelDesc(8, 0, 0, 0, cudaChannelFormatKindUnsigned);
|
|
break;
|
|
}
|
|
|
|
for (int k = 0; k < ctx->numSurfaces; k++) {
|
|
checkCudaErrors(cudaMallocArray(
|
|
&cudaResObj.d_yuvArray[k], &channelDesc,
|
|
ctx->widthSurface * ctx->xScalePtr[k] * ctx->bytesPerPixel,
|
|
ctx->heightSurface * ctx->yScalePtr[k]));
|
|
cudaResObj.cudaSurfaceNvmediaBuf[k] =
|
|
createCudaSurface(cudaResObj.d_yuvArray[k]);
|
|
}
|
|
checkCudaErrors(cudaMalloc(
|
|
&cudaResObj.d_outputImage,
|
|
sizeof(unsigned int) * ctx->widthSurface * ctx->heightSurface));
|
|
|
|
cudaResObj.stream = createCudaStream(deviceId);
|
|
}
|
|
|
|
// CUDA clean up buffers used **without** NvSci API.
|
|
void cleanupCuda(Blit2DTest *ctx, cudaResources &cudaResObj) {
|
|
for (int k = 0; k < ctx->numSurfaces; k++) {
|
|
checkCudaErrors(
|
|
cudaDestroySurfaceObject(cudaResObj.cudaSurfaceNvmediaBuf[k]));
|
|
checkCudaErrors(cudaFreeArray(cudaResObj.d_yuvArray[k]));
|
|
}
|
|
|
|
free(cudaResObj.cudaSurfaceNvmediaBuf);
|
|
|
|
checkCudaErrors(cudaStreamDestroy(cudaResObj.stream));
|
|
checkCudaErrors(cudaFree(cudaResObj.d_outputImage));
|
|
}
|
|
|
|
static void yuvToGrayscaleCudaKernelNonNvSci(cudaResources &cudaResObj,
|
|
int deviceId, int32_t imageWidth,
|
|
int32_t imageHeight) {
|
|
#if WRITE_OUTPUT_IMAGE
|
|
unsigned int *h_dstImage;
|
|
checkCudaErrors(cudaMallocHost(
|
|
&h_dstImage, sizeof(unsigned int) * imageHeight * imageWidth));
|
|
#endif
|
|
dim3 block(16, 16, 1);
|
|
dim3 grid((imageWidth / block.x) + 1, (imageHeight / block.y) + 1, 1);
|
|
|
|
yuvToGrayscale<<<grid, block, 0, cudaResObj.stream>>>(
|
|
cudaResObj.cudaSurfaceNvmediaBuf[0], cudaResObj.d_outputImage, imageWidth,
|
|
imageHeight);
|
|
|
|
#if WRITE_OUTPUT_IMAGE
|
|
checkCudaErrors(
|
|
cudaMemcpyAsync(h_dstImage, cudaResObj.d_outputImage,
|
|
sizeof(unsigned int) * imageHeight * imageWidth,
|
|
cudaMemcpyDeviceToHost, cudaResObj.stream));
|
|
checkCudaErrors(cudaStreamSynchronize(cudaResObj.stream));
|
|
char outputFilename[1024];
|
|
std::string image_filename = "Grayscale";
|
|
strcpy(outputFilename, image_filename.c_str());
|
|
strcpy(outputFilename + image_filename.length(), "_non-nvsci_out.ppm");
|
|
sdkSavePPM4ub(outputFilename, (unsigned char *)h_dstImage, imageWidth,
|
|
imageHeight);
|
|
printf("Wrote '%s'\n", outputFilename);
|
|
checkCudaErrors(cudaFreeHost(h_dstImage));
|
|
#else
|
|
checkCudaErrors(cudaStreamSynchronize(cudaResObj.stream));
|
|
#endif
|
|
}
|
|
|
|
// CUDA operates **without** NvSci APIs buffer/synchronization objects.
|
|
void runCudaOperation(Blit2DTest *ctx, cudaResources &cudaResObj,
|
|
int deviceId) {
|
|
for (int k = 0; k < ctx->numSurfaces; k++) {
|
|
checkCudaErrors(cudaMemcpy2DToArray(
|
|
cudaResObj.d_yuvArray[k], 0, 0, ctx->dstBuff[k],
|
|
ctx->widthSurface * ctx->xScalePtr[k] * ctx->bytesPerPixel,
|
|
ctx->widthSurface * ctx->xScalePtr[k] * ctx->bytesPerPixel,
|
|
ctx->heightSurface * ctx->yScalePtr[k], cudaMemcpyHostToDevice));
|
|
}
|
|
// run cuda kernel over surface object of the LUMA surface part to extract
|
|
// grayscale.
|
|
yuvToGrayscaleCudaKernelNonNvSci(cudaResObj, deviceId, ctx->widthSurface,
|
|
ctx->heightSurface);
|
|
}
|