mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 22:05:49 +08:00
357 lines
13 KiB
Plaintext
357 lines
13 KiB
Plaintext
/* Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* This file demonstrates the usage of conditional graph nodes with
|
|
* a series of *simple* example graphs.
|
|
*
|
|
* For more information on conditional nodes, see the programming guide:
|
|
*
|
|
* https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#conditional-graph-nodes
|
|
*
|
|
*/
|
|
|
|
// System includes
|
|
#include <cassert>
|
|
#include <cstdio>
|
|
|
|
// CUDA runtime
|
|
#include <cuda_runtime.h>
|
|
|
|
// helper functions and utilities to work with CUDA
|
|
#include <helper_cuda.h>
|
|
#include <helper_functions.h>
|
|
|
|
/*
|
|
* Create a graph containing two nodes.
|
|
* The first node, A, is a kernel and the second node, B, is a conditional IF node.
|
|
* The kernel sets the condition variable to true if a device memory location
|
|
* contains an odd number. Otherwise the condition variable is set to false.
|
|
* There is a single kernel, C, within the conditional body which prints a message.
|
|
*
|
|
* A -> B [ C ]
|
|
*
|
|
*/
|
|
|
|
__global__ void ifGraphKernelA(char *dPtr, cudaGraphConditionalHandle handle)
|
|
{
|
|
// In this example, condition is set if *dPtr is odd
|
|
unsigned int value = *dPtr & 0x01;
|
|
cudaGraphSetConditional(handle, value);
|
|
printf("GPU: Handle set to %d\n", value);
|
|
}
|
|
|
|
// This kernel will only be executed if the condition is true
|
|
__global__ void ifGraphKernelC(void)
|
|
{
|
|
printf("GPU: Hello from the GPU!\n");
|
|
}
|
|
|
|
// Setup and launch the graph
|
|
void simpleIfGraph(void)
|
|
{
|
|
cudaGraph_t graph;
|
|
cudaGraphExec_t graphExec;
|
|
cudaGraphNode_t node;
|
|
|
|
void *kernelArgs[2];
|
|
|
|
// Allocate a byte of device memory to use as input
|
|
char *dPtr;
|
|
checkCudaErrors(cudaMalloc((void**)&dPtr, 1));
|
|
|
|
printf("simpleIfGraph: Building graph...\n");
|
|
cudaGraphCreate(&graph, 0);
|
|
|
|
// Create conditional handle.
|
|
cudaGraphConditionalHandle handle;
|
|
cudaGraphConditionalHandleCreate(&handle, graph);
|
|
|
|
// Use a kernel upstream of the conditional to set the handle value
|
|
cudaGraphNodeParams params = { cudaGraphNodeTypeKernel };
|
|
params.kernel.func = (void *)ifGraphKernelA;
|
|
params.kernel.gridDim.x = params.kernel.gridDim.y = params.kernel.gridDim.z = 1;
|
|
params.kernel.blockDim.x = params.kernel.blockDim.y = params.kernel.blockDim.z = 1;
|
|
params.kernel.kernelParams = kernelArgs;
|
|
kernelArgs[0] = &dPtr;
|
|
kernelArgs[1] = &handle;
|
|
checkCudaErrors(cudaGraphAddNode(&node, graph, NULL, 0, ¶ms));
|
|
|
|
cudaGraphNodeParams cParams = { cudaGraphNodeTypeConditional };
|
|
cParams.conditional.handle = handle;
|
|
cParams.conditional.type = cudaGraphCondTypeIf;
|
|
cParams.conditional.size = 1;
|
|
checkCudaErrors(cudaGraphAddNode(&node, graph, &node, 1, &cParams));
|
|
|
|
cudaGraph_t bodyGraph = cParams.conditional.phGraph_out[0];
|
|
|
|
// Populate the body of the conditional node
|
|
cudaGraphNode_t bodyNode;
|
|
params.kernel.func = (void *)ifGraphKernelC;
|
|
params.kernel.kernelParams = nullptr;
|
|
checkCudaErrors(cudaGraphAddNode(&bodyNode, bodyGraph, NULL, 0, ¶ms));
|
|
|
|
checkCudaErrors(cudaGraphInstantiate(&graphExec, graph, NULL, NULL, 0));
|
|
|
|
// Initialize device memory and launch the graph
|
|
checkCudaErrors(cudaMemset(dPtr, 0, 1)); // Set dPtr to 0
|
|
printf("Host: Launching graph with conditional value set to false\n");
|
|
checkCudaErrors(cudaGraphLaunch(graphExec, 0));
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
|
|
// Initialize device memory and launch the graph
|
|
checkCudaErrors(cudaMemset(dPtr, 1, 1)); // Set dPtr to 1
|
|
printf("Host: Launching graph with conditional value set to true\n");
|
|
checkCudaErrors(cudaGraphLaunch(graphExec, 0));
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
|
|
// Cleanup
|
|
checkCudaErrors(cudaGraphExecDestroy(graphExec));
|
|
checkCudaErrors(cudaGraphDestroy(graph));
|
|
checkCudaErrors(cudaFree(dPtr));
|
|
|
|
printf("simpleIfGraph: Complete\n\n");
|
|
}
|
|
|
|
/*
|
|
* Create a graph containing a single conditional while node.
|
|
* The default value of the conditional variable is set to true, so this
|
|
* effectively becomes a do-while loop as the conditional body will always
|
|
* execute at least once. The body of the conditional contains 3 kernel nodes:
|
|
* A [ B -> C -> D ]
|
|
* Nodes B and C are just dummy nodes for demonstrative purposes. Node D
|
|
* will decrement a device memory location and set the condition value to false
|
|
* when the value reaches zero, terminating the loop.
|
|
* In this example, stream capture is used to populate the conditional body.
|
|
*/
|
|
|
|
// This kernel will only be executed if the condition is true
|
|
__global__ void doWhileEmptyKernel(void)
|
|
{
|
|
printf("GPU: doWhileEmptyKernel()\n");
|
|
return;
|
|
}
|
|
|
|
__global__ void doWhileLoopKernel(char *dPtr, cudaGraphConditionalHandle handle)
|
|
{
|
|
if (--(*dPtr) == 0) {
|
|
cudaGraphSetConditional(handle, 0);
|
|
}
|
|
printf("GPU: counter = %d\n", *dPtr);
|
|
}
|
|
|
|
void simpleDoWhileGraph(void)
|
|
{
|
|
cudaGraph_t graph;
|
|
cudaGraphExec_t graphExec;
|
|
cudaGraphNode_t node;
|
|
|
|
// Allocate a byte of device memory to use as input
|
|
char *dPtr;
|
|
checkCudaErrors(cudaMalloc((void**)&dPtr, 1));
|
|
|
|
printf("simpleDoWhileGraph: Building graph...\n");
|
|
checkCudaErrors(cudaGraphCreate(&graph, 0));
|
|
|
|
cudaGraphConditionalHandle handle;
|
|
checkCudaErrors(cudaGraphConditionalHandleCreate(&handle, graph, 1, cudaGraphCondAssignDefault));
|
|
|
|
cudaGraphNodeParams cParams = { cudaGraphNodeTypeConditional };
|
|
cParams.conditional.handle = handle;
|
|
cParams.conditional.type = cudaGraphCondTypeWhile;
|
|
cParams.conditional.size = 1;
|
|
checkCudaErrors(cudaGraphAddNode(&node, graph, NULL, 0, &cParams));
|
|
|
|
cudaGraph_t bodyGraph = cParams.conditional.phGraph_out[0];
|
|
|
|
cudaStream_t captureStream;
|
|
checkCudaErrors(cudaStreamCreate(&captureStream));
|
|
|
|
checkCudaErrors(cudaStreamBeginCaptureToGraph(captureStream, bodyGraph, nullptr, nullptr, 0, cudaStreamCaptureModeRelaxed));
|
|
doWhileEmptyKernel<<<1, 1, 0, captureStream>>>();
|
|
doWhileEmptyKernel<<<1, 1, 0, captureStream>>>();
|
|
doWhileLoopKernel<<<1, 1, 0, captureStream>>>(dPtr, handle);
|
|
checkCudaErrors(cudaStreamEndCapture(captureStream, nullptr));
|
|
checkCudaErrors(cudaStreamDestroy(captureStream));
|
|
|
|
checkCudaErrors(cudaGraphInstantiate(&graphExec, graph, NULL, NULL, 0));
|
|
|
|
// Initialize device memory and launch the graph
|
|
checkCudaErrors(cudaMemset(dPtr, 10, 1)); // Set dPtr to 10
|
|
printf("Host: Launching graph with loop counter set to 10\n");
|
|
checkCudaErrors(cudaGraphLaunch(graphExec, 0));
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
|
|
// Cleanup
|
|
checkCudaErrors(cudaGraphExecDestroy(graphExec));
|
|
checkCudaErrors(cudaGraphDestroy(graph));
|
|
checkCudaErrors(cudaFree(dPtr));
|
|
|
|
printf("simpleDoWhileGraph: Complete\n\n");
|
|
}
|
|
|
|
|
|
/*
|
|
* Create a graph containing a conditional while loop using stream capture.
|
|
* This demonstrates how to insert a conditional node into a stream which is
|
|
* being captured. The graph consists of a kernel node followed by a conditional
|
|
* while node which contains a single kernel node:
|
|
*
|
|
* A -> B [ C ]
|
|
*
|
|
* The same kernel will be used for both nodes A and C. This kernel will test
|
|
* a device memory location and set the condition when the location is non-zero.
|
|
* We must run the kernel before the loop as well as inside the loop in order
|
|
* to behave like a while loop. We need to evaluate the device memory location
|
|
* before the conditional node is evaluated in order to set the condition variable
|
|
* properly. Because we're using a kernel upstream of the conditional node,
|
|
* there is no need to use the handle default value to initialize the conditional
|
|
* value.
|
|
*/
|
|
|
|
__global__ void capturedWhileKernel(char *dPtr, cudaGraphConditionalHandle handle)
|
|
{
|
|
printf("GPU: counter = %d\n", *dPtr);
|
|
if (*dPtr) {
|
|
(*dPtr)--;
|
|
}
|
|
cudaGraphSetConditional(handle, *dPtr);
|
|
}
|
|
|
|
__global__ void capturedWhileEmptyKernel(void)
|
|
{
|
|
printf("GPU: capturedWhileEmptyKernel()\n");
|
|
return;
|
|
}
|
|
|
|
void capturedWhileGraph(void)
|
|
{
|
|
cudaGraph_t graph;
|
|
cudaGraphExec_t graphExec;
|
|
|
|
cudaStreamCaptureStatus status;
|
|
const cudaGraphNode_t *dependencies;
|
|
size_t numDependencies;
|
|
|
|
// Allocate a byte of device memory to use as input
|
|
char *dPtr;
|
|
checkCudaErrors(cudaMalloc((void**)&dPtr, 1));
|
|
|
|
printf("capturedWhileGraph: Building graph...\n");
|
|
cudaStream_t captureStream;
|
|
checkCudaErrors(cudaStreamCreate(&captureStream));
|
|
|
|
checkCudaErrors(cudaStreamBeginCapture(captureStream, cudaStreamCaptureModeRelaxed));
|
|
|
|
// Obtain the handle of the graph
|
|
checkCudaErrors(cudaStreamGetCaptureInfo(captureStream, &status, NULL, &graph, &dependencies, &numDependencies));
|
|
|
|
// Create the conditional handle
|
|
cudaGraphConditionalHandle handle;
|
|
checkCudaErrors(cudaGraphConditionalHandleCreate(&handle, graph));
|
|
|
|
// Insert kernel node A
|
|
capturedWhileKernel<<<1, 1, 0, captureStream>>>(dPtr, handle);
|
|
|
|
// Obtain the handle for node A
|
|
checkCudaErrors(cudaStreamGetCaptureInfo(captureStream, &status, NULL, &graph, &dependencies, &numDependencies));
|
|
|
|
// Insert conditional node B
|
|
cudaGraphNode_t node;
|
|
cudaGraphNodeParams cParams = { cudaGraphNodeTypeConditional };
|
|
cParams.conditional.handle = handle;
|
|
cParams.conditional.type = cudaGraphCondTypeWhile;
|
|
cParams.conditional.size = 1;
|
|
checkCudaErrors(cudaGraphAddNode(&node, graph, dependencies, numDependencies, &cParams));
|
|
|
|
cudaGraph_t bodyGraph = cParams.conditional.phGraph_out[0];
|
|
|
|
// Update stream capture dependencies to account for the node we manually added
|
|
checkCudaErrors(cudaStreamUpdateCaptureDependencies(captureStream, &node, 1, cudaStreamSetCaptureDependencies));
|
|
|
|
// Insert kernel node D
|
|
capturedWhileEmptyKernel<<<1, 1, 0, captureStream>>>();
|
|
|
|
checkCudaErrors(cudaStreamEndCapture(captureStream, &graph));
|
|
checkCudaErrors(cudaStreamDestroy(captureStream));
|
|
|
|
// Populate conditional body graph using stream capture
|
|
cudaStream_t bodyStream;
|
|
checkCudaErrors(cudaStreamCreate(&bodyStream));
|
|
|
|
checkCudaErrors(cudaStreamBeginCaptureToGraph(bodyStream, bodyGraph, nullptr, nullptr, 0, cudaStreamCaptureModeRelaxed));
|
|
|
|
// Insert kernel node C
|
|
capturedWhileKernel<<<1, 1, 0, bodyStream>>>(dPtr, handle);
|
|
checkCudaErrors(cudaStreamEndCapture(bodyStream, nullptr));
|
|
checkCudaErrors(cudaStreamDestroy(bodyStream));
|
|
|
|
checkCudaErrors(cudaGraphInstantiate(&graphExec, graph, NULL, NULL, 0));
|
|
|
|
// Initialize device memory and launch the graph
|
|
// Device memory is zero, so the conditional node will not execute
|
|
checkCudaErrors(cudaMemset(dPtr, 0, 1)); // Set dPtr to 0
|
|
printf("Host: Launching graph with loop counter set to 0\n");
|
|
checkCudaErrors(cudaGraphLaunch(graphExec, 0));
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
|
|
// Initialize device memory and launch the graph
|
|
checkCudaErrors(cudaMemset(dPtr, 10, 1)); // Set dPtr to 10
|
|
printf("Host: Launching graph with loop counter set to 10\n");
|
|
checkCudaErrors(cudaGraphLaunch(graphExec, 0));
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
|
|
// Cleanup
|
|
checkCudaErrors(cudaGraphExecDestroy(graphExec));
|
|
checkCudaErrors(cudaGraphDestroy(graph));
|
|
checkCudaErrors(cudaFree(dPtr));
|
|
|
|
printf("capturedWhileGraph: Complete\n\n");
|
|
}
|
|
|
|
|
|
int main(int argc, char **argv) {
|
|
int device = findCudaDevice(argc, (const char **)argv);
|
|
|
|
int driverVersion = 0;
|
|
|
|
cudaDriverGetVersion(&driverVersion);
|
|
printf("Driver version is: %d.%d\n", driverVersion / 1000,
|
|
(driverVersion % 100) / 10);
|
|
|
|
if (driverVersion < 12030) {
|
|
printf("Waiving execution as driver does not support Graph Conditional Nodes\n");
|
|
exit(EXIT_WAIVED);
|
|
}
|
|
|
|
simpleIfGraph();
|
|
simpleDoWhileGraph();
|
|
capturedWhileGraph();
|
|
|
|
return 0;
|
|
}
|