mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-28 13:59:19 +08:00
232 lines
8.3 KiB
Plaintext
232 lines
8.3 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
//
|
|
// This sample demonstrates how HyperQ allows supporting devices to avoid false
|
|
// dependencies between kernels in different streams.
|
|
//
|
|
// - Devices without HyperQ will run a maximum of two kernels at a time (one
|
|
// kernel_A and one kernel_B).
|
|
// - Devices with HyperQ will run up to 32 kernels simultaneously.
|
|
|
|
#include <cooperative_groups.h>
|
|
#include <stdio.h>
|
|
|
|
namespace cg = cooperative_groups;
|
|
#include <helper_cuda.h>
|
|
#include <helper_functions.h>
|
|
|
|
const char *sSDKsample = "hyperQ";
|
|
|
|
// This subroutine does no real work but runs for at least the specified number
|
|
// of clock ticks.
|
|
__device__ void clock_block(clock_t *d_o, clock_t clock_count) {
|
|
unsigned int start_clock = (unsigned int)clock();
|
|
|
|
clock_t clock_offset = 0;
|
|
|
|
while (clock_offset < clock_count) {
|
|
unsigned int end_clock = (unsigned int)clock();
|
|
|
|
// The code below should work like
|
|
// this (thanks to modular arithmetics):
|
|
//
|
|
// clock_offset = (clock_t) (end_clock > start_clock ?
|
|
// end_clock - start_clock :
|
|
// end_clock + (0xffffffffu - start_clock));
|
|
//
|
|
// Indeed, let m = 2^32 then
|
|
// end - start = end + m - start (mod m).
|
|
|
|
clock_offset = (clock_t)(end_clock - start_clock);
|
|
}
|
|
|
|
d_o[0] = clock_offset;
|
|
}
|
|
|
|
// We create two identical kernels calling clock_block(), we create two so that
|
|
// we can identify dependencies in the profile timeline ("kernel_B" is always
|
|
// dependent on "kernel_A" in the same stream).
|
|
__global__ void kernel_A(clock_t *d_o, clock_t clock_count) {
|
|
clock_block(d_o, clock_count);
|
|
}
|
|
__global__ void kernel_B(clock_t *d_o, clock_t clock_count) {
|
|
clock_block(d_o, clock_count);
|
|
}
|
|
|
|
// Single-warp reduction kernel (note: this is not optimized for simplicity)
|
|
__global__ void sum(clock_t *d_clocks, int N) {
|
|
// Handle to thread block group
|
|
cg::thread_block cta = cg::this_thread_block();
|
|
__shared__ clock_t s_clocks[32];
|
|
|
|
clock_t my_sum = 0;
|
|
|
|
for (int i = threadIdx.x; i < N; i += blockDim.x) {
|
|
my_sum += d_clocks[i];
|
|
}
|
|
|
|
s_clocks[threadIdx.x] = my_sum;
|
|
cg::sync(cta);
|
|
|
|
for (int i = warpSize / 2; i > 0; i /= 2) {
|
|
if (threadIdx.x < i) {
|
|
s_clocks[threadIdx.x] += s_clocks[threadIdx.x + i];
|
|
}
|
|
|
|
cg::sync(cta);
|
|
}
|
|
|
|
if (threadIdx.x == 0) {
|
|
d_clocks[0] = s_clocks[0];
|
|
}
|
|
}
|
|
|
|
int main(int argc, char **argv) {
|
|
int nstreams = 32; // One stream for each pair of kernels
|
|
float kernel_time = 10; // Time each kernel should run in ms
|
|
float elapsed_time;
|
|
int cuda_device = 0;
|
|
|
|
printf("starting %s...\n", sSDKsample);
|
|
|
|
// Get number of streams (if overridden on the command line)
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "nstreams")) {
|
|
nstreams = getCmdLineArgumentInt(argc, (const char **)argv, "nstreams");
|
|
}
|
|
|
|
// Use command-line specified CUDA device, otherwise use device with
|
|
// highest Gflops/s
|
|
cuda_device = findCudaDevice(argc, (const char **)argv);
|
|
|
|
// Get device properties
|
|
cudaDeviceProp deviceProp;
|
|
checkCudaErrors(cudaGetDevice(&cuda_device));
|
|
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, cuda_device));
|
|
|
|
// HyperQ is available in devices of Compute Capability 3.5 and higher
|
|
if (deviceProp.major < 3 || (deviceProp.major == 3 && deviceProp.minor < 5)) {
|
|
if (deviceProp.concurrentKernels == 0) {
|
|
printf(
|
|
"> GPU does not support concurrent kernel execution (SM 3.5 or "
|
|
"higher required)\n");
|
|
printf(" CUDA kernel runs will be serialized\n");
|
|
} else {
|
|
printf("> GPU does not support HyperQ\n");
|
|
printf(" CUDA kernel runs will have limited concurrency\n");
|
|
}
|
|
}
|
|
|
|
printf("> Detected Compute SM %d.%d hardware with %d multi-processors\n",
|
|
deviceProp.major, deviceProp.minor, deviceProp.multiProcessorCount);
|
|
|
|
// Allocate host memory for the output (reduced to a single value)
|
|
clock_t *a = 0;
|
|
checkCudaErrors(cudaMallocHost((void **)&a, sizeof(clock_t)));
|
|
|
|
// Allocate device memory for the output (one value for each kernel)
|
|
clock_t *d_a = 0;
|
|
checkCudaErrors(cudaMalloc((void **)&d_a, 2 * nstreams * sizeof(clock_t)));
|
|
|
|
// Allocate and initialize an array of stream handles
|
|
cudaStream_t *streams =
|
|
(cudaStream_t *)malloc(nstreams * sizeof(cudaStream_t));
|
|
|
|
for (int i = 0; i < nstreams; i++) {
|
|
checkCudaErrors(cudaStreamCreate(&(streams[i])));
|
|
}
|
|
|
|
// Create CUDA event handles
|
|
cudaEvent_t start_event, stop_event;
|
|
checkCudaErrors(cudaEventCreate(&start_event));
|
|
checkCudaErrors(cudaEventCreate(&stop_event));
|
|
|
|
// Target time per kernel is kernel_time ms, clockRate is in KHz
|
|
// Target number of clocks = target time * clock frequency
|
|
#if defined(__arm__) || defined(__aarch64__)
|
|
// the kernel takes more time than the channel reset time on arm archs, so to
|
|
// prevent hangs reduce time_clocks.
|
|
clock_t time_clocks = (clock_t)(kernel_time * (deviceProp.clockRate / 100));
|
|
#else
|
|
clock_t time_clocks = (clock_t)(kernel_time * deviceProp.clockRate);
|
|
#endif
|
|
clock_t total_clocks = 0;
|
|
|
|
// Start the clock
|
|
checkCudaErrors(cudaEventRecord(start_event, 0));
|
|
|
|
// Queue pairs of {kernel_A, kernel_B} in separate streams
|
|
for (int i = 0; i < nstreams; ++i) {
|
|
kernel_A<<<1, 1, 0, streams[i]>>>(&d_a[2 * i], time_clocks);
|
|
total_clocks += time_clocks;
|
|
kernel_B<<<1, 1, 0, streams[i]>>>(&d_a[2 * i + 1], time_clocks);
|
|
total_clocks += time_clocks;
|
|
}
|
|
|
|
// Stop the clock in stream 0 (i.e. all previous kernels will be complete)
|
|
checkCudaErrors(cudaEventRecord(stop_event, 0));
|
|
|
|
// At this point the CPU has dispatched all work for the GPU and can
|
|
// continue processing other tasks in parallel. In this sample we just want
|
|
// to wait until all work is done so we use a blocking cudaMemcpy below.
|
|
|
|
// Run the sum kernel and copy the result back to host
|
|
sum<<<1, 32>>>(d_a, 2 * nstreams);
|
|
checkCudaErrors(cudaMemcpy(a, d_a, sizeof(clock_t), cudaMemcpyDeviceToHost));
|
|
|
|
// stop_event will have been recorded but including the synchronize here to
|
|
// prevent copy/paste errors!
|
|
checkCudaErrors(cudaEventSynchronize(stop_event));
|
|
checkCudaErrors(cudaEventElapsedTime(&elapsed_time, start_event, stop_event));
|
|
|
|
printf(
|
|
"Expected time for serial execution of %d sets of kernels is between "
|
|
"approx. %.3fs and %.3fs\n",
|
|
nstreams, (nstreams + 1) * kernel_time / 1000.0f,
|
|
2 * nstreams * kernel_time / 1000.0f);
|
|
printf(
|
|
"Expected time for fully concurrent execution of %d sets of kernels is "
|
|
"approx. %.3fs\n",
|
|
nstreams, 2 * kernel_time / 1000.0f);
|
|
printf("Measured time for sample = %.3fs\n", elapsed_time / 1000.0f);
|
|
|
|
bool bTestResult = (a[0] >= total_clocks);
|
|
|
|
// Release resources
|
|
for (int i = 0; i < nstreams; i++) {
|
|
cudaStreamDestroy(streams[i]);
|
|
}
|
|
|
|
free(streams);
|
|
cudaEventDestroy(start_event);
|
|
cudaEventDestroy(stop_event);
|
|
cudaFreeHost(a);
|
|
cudaFree(d_a);
|
|
|
|
exit(bTestResult ? EXIT_SUCCESS : EXIT_FAILURE);
|
|
}
|