mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 16:05:51 +08:00
152 lines
5.7 KiB
Plaintext
152 lines
5.7 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
This file contains simple wrapper functions that call the CUDA kernels
|
|
*/
|
|
#define HELPERGL_EXTERN_GL_FUNC_IMPLEMENTATION
|
|
#include <helper_gl.h>
|
|
#include <helper_cuda.h>
|
|
#include <cstdlib>
|
|
#include <cstdio>
|
|
#include <string.h>
|
|
#include <cuda_gl_interop.h>
|
|
|
|
#include "thrust/device_ptr.h"
|
|
#include "thrust/for_each.h"
|
|
#include "thrust/iterator/zip_iterator.h"
|
|
#include "thrust/sort.h"
|
|
|
|
#include "particles_kernel_device.cuh"
|
|
#include "ParticleSystem.cuh"
|
|
|
|
extern "C" {
|
|
|
|
cudaArray *noiseArray;
|
|
|
|
void setParameters(SimParams *hostParams) {
|
|
// copy parameters to constant memory
|
|
checkCudaErrors(cudaMemcpyToSymbol(params, hostParams, sizeof(SimParams)));
|
|
}
|
|
|
|
// Round a / b to nearest higher integer value
|
|
int iDivUp(int a, int b) { return (a % b != 0) ? (a / b + 1) : (a / b); }
|
|
|
|
// compute grid and thread block size for a given number of elements
|
|
void computeGridSize(int n, int blockSize, int &numBlocks, int &numThreads) {
|
|
numThreads = min(blockSize, n);
|
|
numBlocks = iDivUp(n, numThreads);
|
|
}
|
|
|
|
inline float frand() { return rand() / (float)RAND_MAX; }
|
|
|
|
// create 3D texture containing random values
|
|
void createNoiseTexture(int w, int h, int d) {
|
|
cudaExtent size = make_cudaExtent(w, h, d);
|
|
size_t elements = size.width * size.height * size.depth;
|
|
|
|
float *volumeData = (float *)malloc(elements * 4 * sizeof(float));
|
|
float *ptr = volumeData;
|
|
|
|
for (size_t i = 0; i < elements; i++) {
|
|
*ptr++ = frand() * 2.0f - 1.0f;
|
|
*ptr++ = frand() * 2.0f - 1.0f;
|
|
*ptr++ = frand() * 2.0f - 1.0f;
|
|
*ptr++ = frand() * 2.0f - 1.0f;
|
|
}
|
|
|
|
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<float4>();
|
|
checkCudaErrors(cudaMalloc3DArray(&noiseArray, &channelDesc, size));
|
|
|
|
cudaMemcpy3DParms copyParams = {0};
|
|
copyParams.srcPtr = make_cudaPitchedPtr(
|
|
(void *)volumeData, size.width * sizeof(float4), size.width, size.height);
|
|
copyParams.dstArray = noiseArray;
|
|
copyParams.extent = size;
|
|
copyParams.kind = cudaMemcpyHostToDevice;
|
|
checkCudaErrors(cudaMemcpy3D(©Params));
|
|
|
|
free(volumeData);
|
|
|
|
cudaResourceDesc texRes;
|
|
memset(&texRes, 0, sizeof(cudaResourceDesc));
|
|
|
|
texRes.resType = cudaResourceTypeArray;
|
|
texRes.res.array.array = noiseArray;
|
|
|
|
cudaTextureDesc texDescr;
|
|
memset(&texDescr, 0, sizeof(cudaTextureDesc));
|
|
|
|
texDescr.normalizedCoords = true;
|
|
texDescr.filterMode = cudaFilterModeLinear;
|
|
texDescr.addressMode[0] = cudaAddressModeWrap;
|
|
texDescr.addressMode[1] = cudaAddressModeWrap;
|
|
texDescr.addressMode[2] = cudaAddressModeWrap;
|
|
texDescr.readMode = cudaReadModeElementType;
|
|
|
|
checkCudaErrors(cudaCreateTextureObject(&noiseTex, &texRes, &texDescr, NULL));
|
|
}
|
|
|
|
void integrateSystem(float4 *oldPos, float4 *newPos, float4 *oldVel,
|
|
float4 *newVel, float deltaTime, int numParticles) {
|
|
thrust::device_ptr<float4> d_newPos(newPos);
|
|
thrust::device_ptr<float4> d_newVel(newVel);
|
|
thrust::device_ptr<float4> d_oldPos(oldPos);
|
|
thrust::device_ptr<float4> d_oldVel(oldVel);
|
|
|
|
thrust::for_each(thrust::make_zip_iterator(thrust::make_tuple(
|
|
d_newPos, d_newVel, d_oldPos, d_oldVel)),
|
|
thrust::make_zip_iterator(thrust::make_tuple(
|
|
d_newPos + numParticles, d_newVel + numParticles,
|
|
d_oldPos + numParticles, d_oldVel + numParticles)),
|
|
integrate_functor(deltaTime, noiseTex));
|
|
}
|
|
|
|
void calcDepth(float4 *pos,
|
|
float *keys, // output
|
|
uint *indices, // output
|
|
float3 sortVector, int numParticles) {
|
|
thrust::device_ptr<float4> d_pos(pos);
|
|
thrust::device_ptr<float> d_keys(keys);
|
|
thrust::device_ptr<uint> d_indices(indices);
|
|
|
|
thrust::for_each(thrust::make_zip_iterator(thrust::make_tuple(d_pos, d_keys)),
|
|
thrust::make_zip_iterator(thrust::make_tuple(
|
|
d_pos + numParticles, d_keys + numParticles)),
|
|
calcDepth_functor(sortVector));
|
|
|
|
thrust::sequence(d_indices, d_indices + numParticles);
|
|
}
|
|
|
|
void sortParticles(float *sortKeys, uint *indices, uint numParticles) {
|
|
thrust::sort_by_key(thrust::device_ptr<float>(sortKeys),
|
|
thrust::device_ptr<float>(sortKeys + numParticles),
|
|
thrust::device_ptr<uint>(indices));
|
|
}
|
|
|
|
} // extern "C"
|