mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-28 16:49:18 +08:00
310 lines
9.9 KiB
Plaintext
310 lines
9.9 KiB
Plaintext
/* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
#include <cooperative_groups.h>
|
|
|
|
namespace cg = cooperative_groups;
|
|
|
|
// Utility function to extract unsigned chars from an
|
|
// unsigned integer
|
|
__device__ uchar4 uint_to_uchar4(const unsigned int in) {
|
|
return make_uchar4((in & 0x000000ff) >> 0, (in & 0x0000ff00) >> 8,
|
|
(in & 0x00ff0000) >> 16, (in & 0xff000000) >> 24);
|
|
}
|
|
|
|
// Utility for dealing with vector data at different levels.
|
|
struct packed_result {
|
|
uint4 x, y, z, w;
|
|
};
|
|
|
|
__device__ packed_result get_prefix_sum(const uint4 &data,
|
|
const cg::thread_block &cta) {
|
|
const auto tile = cg::tiled_partition<32>(cta);
|
|
|
|
__shared__ unsigned int sums[128];
|
|
const unsigned int lane_id = tile.thread_rank();
|
|
const unsigned int warp_id = tile.meta_group_rank();
|
|
|
|
unsigned int result[16] = {};
|
|
{
|
|
const uchar4 a = uint_to_uchar4(data.x);
|
|
const uchar4 b = uint_to_uchar4(data.y);
|
|
const uchar4 c = uint_to_uchar4(data.z);
|
|
const uchar4 d = uint_to_uchar4(data.w);
|
|
|
|
result[0] = a.x;
|
|
result[1] = a.x + a.y;
|
|
result[2] = a.x + a.y + a.z;
|
|
result[3] = a.x + a.y + a.z + a.w;
|
|
|
|
result[4] = b.x;
|
|
result[5] = b.x + b.y;
|
|
result[6] = b.x + b.y + b.z;
|
|
result[7] = b.x + b.y + b.z + b.w;
|
|
|
|
result[8] = c.x;
|
|
result[9] = c.x + c.y;
|
|
result[10] = c.x + c.y + c.z;
|
|
result[11] = c.x + c.y + c.z + c.w;
|
|
|
|
result[12] = d.x;
|
|
result[13] = d.x + d.y;
|
|
result[14] = d.x + d.y + d.z;
|
|
result[15] = d.x + d.y + d.z + d.w;
|
|
}
|
|
|
|
#pragma unroll
|
|
for (unsigned int i = 4; i <= 7; i++) result[i] += result[3];
|
|
|
|
#pragma unroll
|
|
for (unsigned int i = 8; i <= 11; i++) result[i] += result[7];
|
|
|
|
#pragma unroll
|
|
for (unsigned int i = 12; i <= 15; i++) result[i] += result[11];
|
|
|
|
unsigned int sum = result[15];
|
|
|
|
// the prefix sum for each thread's 16 value is computed,
|
|
// now the final sums (result[15]) need to be shared
|
|
// with the other threads and add. To do this,
|
|
// the __shfl_up() instruction is used and a shuffle scan
|
|
// operation is performed to distribute the sums to the correct
|
|
// threads
|
|
|
|
#pragma unroll
|
|
for (unsigned int i = 1; i < 32; i *= 2) {
|
|
const unsigned int n = tile.shfl_up(sum, i);
|
|
|
|
if (lane_id >= i) {
|
|
#pragma unroll
|
|
for (unsigned int j = 0; j < 16; j++) {
|
|
result[j] += n;
|
|
}
|
|
|
|
sum += n;
|
|
}
|
|
}
|
|
|
|
// Now the final sum for the warp must be shared
|
|
// between warps. This is done by each warp
|
|
// having a thread store to shared memory, then
|
|
// having some other warp load the values and
|
|
// compute a prefix sum, again by using __shfl_up.
|
|
// The results are uniformly added back to the warps.
|
|
// last thread in the warp holding sum of the warp
|
|
// places that in shared
|
|
if (tile.thread_rank() == (tile.size() - 1)) {
|
|
sums[warp_id] = result[15];
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
if (warp_id == 0) {
|
|
unsigned int warp_sum = sums[lane_id];
|
|
|
|
#pragma unroll
|
|
for (unsigned int i = 1; i <= 16; i *= 2) {
|
|
const unsigned int n = tile.shfl_up(warp_sum, i);
|
|
|
|
if (lane_id >= i) warp_sum += n;
|
|
}
|
|
|
|
sums[lane_id] = warp_sum;
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
// fold in unused warp
|
|
if (warp_id > 0) {
|
|
const unsigned int blockSum = sums[warp_id - 1];
|
|
|
|
#pragma unroll
|
|
for (unsigned int i = 0; i < 16; i++) {
|
|
result[i] += blockSum;
|
|
}
|
|
}
|
|
|
|
packed_result out;
|
|
memcpy(&out, result, sizeof(out));
|
|
return out;
|
|
}
|
|
|
|
// This function demonstrates some uses of the shuffle instruction
|
|
// in the generation of an integral image (also
|
|
// called a summed area table)
|
|
// The approach is two pass, a horizontal (scanline) then a vertical
|
|
// (column) pass.
|
|
// This is the horizontal pass kernel.
|
|
__global__ void shfl_intimage_rows(const uint4 *img, uint4 *integral_image) {
|
|
const auto cta = cg::this_thread_block();
|
|
const auto tile = cg::tiled_partition<32>(cta);
|
|
|
|
const unsigned int id = threadIdx.x;
|
|
// pointer to head of current scanline
|
|
const uint4 *scanline = &img[blockIdx.x * 120];
|
|
packed_result result = get_prefix_sum(scanline[id], cta);
|
|
|
|
// This access helper allows packed_result to stay optimized as registers
|
|
// rather than spill to stack
|
|
auto idxToElem = [&result](unsigned int idx) -> const uint4 {
|
|
switch (idx) {
|
|
case 0:
|
|
return result.x;
|
|
case 1:
|
|
return result.y;
|
|
case 2:
|
|
return result.z;
|
|
case 3:
|
|
return result.w;
|
|
}
|
|
return {};
|
|
};
|
|
|
|
// assemble result
|
|
// Each thread has 16 values to write, which are
|
|
// now integer data (to avoid overflow). Instead of
|
|
// each thread writing consecutive uint4s, the
|
|
// approach shown here experiments using
|
|
// the shuffle command to reformat the data
|
|
// inside the registers so that each thread holds
|
|
// consecutive data to be written so larger contiguous
|
|
// segments can be assembled for writing.
|
|
/*
|
|
For example data that needs to be written as
|
|
|
|
GMEM[16] <- x0 x1 x2 x3 y0 y1 y2 y3 z0 z1 z2 z3 w0 w1 w2 w3
|
|
but is stored in registers (r0..r3), in four threads (0..3) as:
|
|
|
|
threadId 0 1 2 3
|
|
r0 x0 y0 z0 w0
|
|
r1 x1 y1 z1 w1
|
|
r2 x2 y2 z2 w2
|
|
r3 x3 y3 z3 w3
|
|
|
|
after apply __shfl_xor operations to move data between registers r1..r3:
|
|
|
|
threadId 00 01 10 11
|
|
x0 y0 z0 w0
|
|
xor(01)->y1 x1 w1 z1
|
|
xor(10)->z2 w2 x2 y2
|
|
xor(11)->w3 z3 y3 x3
|
|
|
|
and now x0..x3, and z0..z3 can be written out in order by all threads.
|
|
|
|
In the current code, each register above is actually representing
|
|
four integers to be written as uint4's to GMEM.
|
|
*/
|
|
|
|
const unsigned int idMask = id & 3;
|
|
const unsigned int idSwizzle = (id + 2) & 3;
|
|
const unsigned int idShift = (id >> 2) << 4;
|
|
const unsigned int blockOffset = blockIdx.x * 480;
|
|
|
|
// Use CG tile to warp shuffle vector types
|
|
result.y = tile.shfl_xor(result.y, 1);
|
|
result.z = tile.shfl_xor(result.z, 2);
|
|
result.w = tile.shfl_xor(result.w, 3);
|
|
|
|
// First batch
|
|
integral_image[blockOffset + idMask + idShift] = idxToElem(idMask);
|
|
// Second batch offset by 2
|
|
integral_image[blockOffset + idSwizzle + idShift + 8] = idxToElem(idSwizzle);
|
|
|
|
// continuing from the above example,
|
|
// this use of __shfl_xor() places the y0..y3 and w0..w3 data
|
|
// in order.
|
|
result.x = tile.shfl_xor(result.x, 1);
|
|
result.y = tile.shfl_xor(result.y, 1);
|
|
result.z = tile.shfl_xor(result.z, 1);
|
|
result.w = tile.shfl_xor(result.w, 1);
|
|
|
|
// First batch
|
|
integral_image[blockOffset + idMask + idShift + 4] = idxToElem(idMask);
|
|
// Second batch offset by 2
|
|
integral_image[blockOffset + idSwizzle + idShift + 12] = idxToElem(idSwizzle);
|
|
}
|
|
|
|
// This kernel computes columnwise prefix sums. When the data input is
|
|
// the row sums from above, this completes the integral image.
|
|
// The approach here is to have each block compute a local set of sums.
|
|
// First , the data covered by the block is loaded into shared memory,
|
|
// then instead of performing a sum in shared memory using __syncthreads
|
|
// between stages, the data is reformatted so that the necessary sums
|
|
// occur inside warps and the shuffle scan operation is used.
|
|
// The final set of sums from the block is then propagated, with the block
|
|
// computing "down" the image and adding the running sum to the local
|
|
// block sums.
|
|
__global__ void shfl_vertical_shfl(unsigned int *img, int width, int height) {
|
|
__shared__ unsigned int sums[32][9];
|
|
int tidx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
// int warp_id = threadIdx.x / warpSize ;
|
|
unsigned int lane_id = tidx % 8;
|
|
// int rows_per_thread = (height / blockDim. y) ;
|
|
// int start_row = rows_per_thread * threadIdx.y;
|
|
unsigned int stepSum = 0;
|
|
unsigned int mask = 0xffffffff;
|
|
|
|
sums[threadIdx.x][threadIdx.y] = 0;
|
|
__syncthreads();
|
|
|
|
for (int step = 0; step < 135; step++) {
|
|
unsigned int sum = 0;
|
|
unsigned int *p = img + (threadIdx.y + step * 8) * width + tidx;
|
|
|
|
sum = *p;
|
|
sums[threadIdx.x][threadIdx.y] = sum;
|
|
__syncthreads();
|
|
|
|
// place into SMEM
|
|
// shfl scan reduce the SMEM, reformating so the column
|
|
// sums are computed in a warp
|
|
// then read out properly
|
|
int partial_sum = 0;
|
|
int j = threadIdx.x % 8;
|
|
int k = threadIdx.x / 8 + threadIdx.y * 4;
|
|
|
|
partial_sum = sums[k][j];
|
|
|
|
for (int i = 1; i <= 8; i *= 2) {
|
|
int n = __shfl_up_sync(mask, partial_sum, i, 32);
|
|
|
|
if (lane_id >= i) partial_sum += n;
|
|
}
|
|
|
|
sums[k][j] = partial_sum;
|
|
__syncthreads();
|
|
|
|
if (threadIdx.y > 0) {
|
|
sum += sums[threadIdx.x][threadIdx.y - 1];
|
|
}
|
|
|
|
sum += stepSum;
|
|
stepSum += sums[threadIdx.x][blockDim.y - 1];
|
|
__syncthreads();
|
|
*p = sum;
|
|
}
|
|
}
|