mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 22:05:49 +08:00
457 lines
12 KiB
Plaintext
457 lines
12 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
||
*
|
||
* Redistribution and use in source and binary forms, with or without
|
||
* modification, are permitted provided that the following conditions
|
||
* are met:
|
||
* * Redistributions of source code must retain the above copyright
|
||
* notice, this list of conditions and the following disclaimer.
|
||
* * Redistributions in binary form must reproduce the above copyright
|
||
* notice, this list of conditions and the following disclaimer in the
|
||
* documentation and/or other materials provided with the distribution.
|
||
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
||
* contributors may be used to endorse or promote products derived
|
||
* from this software without specific prior written permission.
|
||
*
|
||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
*/
|
||
|
||
#include <stdio.h>
|
||
#include "helper_cuda.h"
|
||
#include "Mandelbrot_kernel.h"
|
||
|
||
// The dimensions of the thread block
|
||
#define BLOCKDIM_X 16
|
||
#define BLOCKDIM_Y 16
|
||
|
||
#define ABS(n) ((n) < 0 ? -(n) : (n))
|
||
|
||
// Double single functions based on DSFUN90 package:
|
||
// http://crd.lbl.gov/~dhbailey/mpdist/index.html
|
||
|
||
// This function sets the DS number A equal to the double precision floating
|
||
// point number B.
|
||
inline void dsdeq(float &a0, float &a1, double b) {
|
||
a0 = (float)b;
|
||
a1 = (float)(b - a0);
|
||
} // dsdcp
|
||
|
||
// This function sets the DS number A equal to the single precision floating
|
||
// point number B.
|
||
__device__ inline void dsfeq(float &a0, float &a1, float b) {
|
||
a0 = b;
|
||
a1 = 0.0f;
|
||
} // dsfeq
|
||
|
||
// This function computes c = a + b.
|
||
__device__ inline void dsadd(float &c0, float &c1, const float a0,
|
||
const float a1, const float b0, const float b1) {
|
||
// Compute dsa + dsb using Knuth's trick.
|
||
float t1 = a0 + b0;
|
||
float e = t1 - a0;
|
||
float t2 = ((b0 - e) + (a0 - (t1 - e))) + a1 + b1;
|
||
|
||
// The result is t1 + t2, after normalization.
|
||
c0 = e = t1 + t2;
|
||
c1 = t2 - (e - t1);
|
||
} // dsadd
|
||
|
||
// This function computes c = a - b.
|
||
__device__ inline void dssub(float &c0, float &c1, const float a0,
|
||
const float a1, const float b0, const float b1) {
|
||
// Compute dsa - dsb using Knuth's trick.
|
||
float t1 = a0 - b0;
|
||
float e = t1 - a0;
|
||
float t2 = ((-b0 - e) + (a0 - (t1 - e))) + a1 - b1;
|
||
|
||
// The result is t1 + t2, after normalization.
|
||
c0 = e = t1 + t2;
|
||
c1 = t2 - (e - t1);
|
||
} // dssub
|
||
|
||
#if 1
|
||
|
||
// This function multiplies DS numbers A and B to yield the DS product C.
|
||
__device__ inline void dsmul(float &c0, float &c1, const float a0,
|
||
const float a1, const float b0, const float b1) {
|
||
// This splits dsa(1) and dsb(1) into high-order and low-order words.
|
||
float cona = a0 * 8193.0f;
|
||
float conb = b0 * 8193.0f;
|
||
float sa1 = cona - (cona - a0);
|
||
float sb1 = conb - (conb - b0);
|
||
float sa2 = a0 - sa1;
|
||
float sb2 = b0 - sb1;
|
||
|
||
// Multilply a0 * b0 using Dekker's method.
|
||
float c11 = a0 * b0;
|
||
float c21 = (((sa1 * sb1 - c11) + sa1 * sb2) + sa2 * sb1) + sa2 * sb2;
|
||
|
||
// Compute a0 * b1 + a1 * b0 (only high-order word is needed).
|
||
float c2 = a0 * b1 + a1 * b0;
|
||
|
||
// Compute (c11, c21) + c2 using Knuth's trick, also adding low-order product.
|
||
float t1 = c11 + c2;
|
||
float e = t1 - c11;
|
||
float t2 = ((c2 - e) + (c11 - (t1 - e))) + c21 + a1 * b1;
|
||
|
||
// The result is t1 + t2, after normalization.
|
||
c0 = e = t1 + t2;
|
||
c1 = t2 - (e - t1);
|
||
} // dsmul
|
||
|
||
#else
|
||
|
||
// Modified double-single mul function by Norbert Juffa, NVIDIA
|
||
// uses __fmul_rn() and __fadd_rn() intrinsics which prevent FMAD merging
|
||
|
||
/* Based on: Guillaume Da Gra<72>a, David Defour. Implementation of Float-Float
|
||
* Operators on Graphics Hardware. RNC'7 pp. 23-32, 2006.
|
||
*/
|
||
|
||
// This function multiplies DS numbers A and B to yield the DS product C.
|
||
__device__ inline void dsmul(float &c0, float &c1, const float a0,
|
||
const float a1, const float b0, const float b1) {
|
||
// This splits dsa(1) and dsb(1) into high-order and low-order words.
|
||
float cona = a0 * 8193.0f;
|
||
float conb = b0 * 8193.0f;
|
||
float sa1 = cona - (cona - a0);
|
||
float sb1 = conb - (conb - b0);
|
||
float sa2 = a0 - sa1;
|
||
float sb2 = b0 - sb1;
|
||
|
||
// Multilply a0 * b0 using Dekker's method.
|
||
float c11 = __fmul_rn(a0, b0);
|
||
float c21 = (((sa1 * sb1 - c11) + sa1 * sb2) + sa2 * sb1) + sa2 * sb2;
|
||
|
||
// Compute a0 * b1 + a1 * b0 (only high-order word is needed).
|
||
float c2 = __fmul_rn(a0, b1) + __fmul_rn(a1, b0);
|
||
|
||
// Compute (c11, c21) + c2 using Knuth's trick, also adding low-order product.
|
||
float t1 = c11 + c2;
|
||
float e = t1 - c11;
|
||
float t2 = ((c2 - e) + (c11 - (t1 - e))) + c21 + __fmul_rn(a1, b1);
|
||
|
||
// The result is t1 + t2, after normalization.
|
||
c0 = e = t1 + t2;
|
||
c1 = t2 - (e - t1);
|
||
} // dsmul
|
||
|
||
#endif
|
||
|
||
// The core Mandelbrot CUDA GPU calculation function
|
||
#if 1
|
||
// Unrolled version
|
||
template <class T>
|
||
__device__ inline int CalcMandelbrot(const T xPos, const T yPos,
|
||
const T xJParam, const T yJParam,
|
||
const int crunch, const bool isJulia) {
|
||
T x, y, xx, yy;
|
||
int i = crunch;
|
||
|
||
T xC, yC;
|
||
|
||
if (isJulia) {
|
||
xC = xJParam;
|
||
yC = yJParam;
|
||
y = yPos;
|
||
x = xPos;
|
||
yy = y * y;
|
||
xx = x * x;
|
||
|
||
} else {
|
||
xC = xPos;
|
||
yC = yPos;
|
||
y = 0;
|
||
x = 0;
|
||
yy = 0;
|
||
xx = 0;
|
||
}
|
||
|
||
do {
|
||
// Iteration 1
|
||
if (xx + yy > T(4.0)) return i - 1;
|
||
|
||
y = x * y * T(2.0) + yC;
|
||
x = xx - yy + xC;
|
||
yy = y * y;
|
||
xx = x * x;
|
||
|
||
// Iteration 2
|
||
if (xx + yy > T(4.0)) return i - 2;
|
||
|
||
y = x * y * T(2.0) + yC;
|
||
x = xx - yy + xC;
|
||
yy = y * y;
|
||
xx = x * x;
|
||
|
||
// Iteration 3
|
||
if (xx + yy > T(4.0)) return i - 3;
|
||
|
||
y = x * y * T(2.0) + yC;
|
||
x = xx - yy + xC;
|
||
yy = y * y;
|
||
xx = x * x;
|
||
|
||
// Iteration 4
|
||
if (xx + yy > T(4.0)) return i - 4;
|
||
|
||
y = x * y * T(2.0) + yC;
|
||
x = xx - yy + xC;
|
||
yy = y * y;
|
||
xx = x * x;
|
||
|
||
// Iteration 5
|
||
if (xx + yy > T(4.0)) return i - 5;
|
||
|
||
y = x * y * T(2.0) + yC;
|
||
x = xx - yy + xC;
|
||
yy = y * y;
|
||
xx = x * x;
|
||
|
||
// Iteration 6
|
||
if (xx + yy > T(4.0)) return i - 6;
|
||
|
||
y = x * y * T(2.0) + yC;
|
||
x = xx - yy + xC;
|
||
yy = y * y;
|
||
xx = x * x;
|
||
|
||
// Iteration 7
|
||
if (xx + yy > T(4.0)) return i - 7;
|
||
|
||
y = x * y * T(2.0) + yC;
|
||
x = xx - yy + xC;
|
||
yy = y * y;
|
||
xx = x * x;
|
||
|
||
// Iteration 8
|
||
if (xx + yy > T(4.0)) return i - 8;
|
||
|
||
y = x * y * T(2.0) + yC;
|
||
x = xx - yy + xC;
|
||
yy = y * y;
|
||
xx = x * x;
|
||
|
||
// Iteration 9
|
||
if (xx + yy > T(4.0)) return i - 9;
|
||
|
||
y = x * y * T(2.0) + yC;
|
||
x = xx - yy + xC;
|
||
yy = y * y;
|
||
xx = x * x;
|
||
|
||
// Iteration 10
|
||
if (xx + yy > T(4.0)) return i - 10;
|
||
|
||
y = x * y * T(2.0) + yC;
|
||
x = xx - yy + xC;
|
||
yy = y * y;
|
||
xx = x * x;
|
||
|
||
// Iteration 11
|
||
if (xx + yy > T(4.0)) return i - 11;
|
||
|
||
y = x * y * T(2.0) + yC;
|
||
x = xx - yy + xC;
|
||
yy = y * y;
|
||
xx = x * x;
|
||
|
||
// Iteration 12
|
||
if (xx + yy > T(4.0)) return i - 12;
|
||
|
||
y = x * y * T(2.0) + yC;
|
||
x = xx - yy + xC;
|
||
yy = y * y;
|
||
xx = x * x;
|
||
|
||
// Iteration 13
|
||
if (xx + yy > T(4.0)) return i - 13;
|
||
|
||
y = x * y * T(2.0) + yC;
|
||
x = xx - yy + xC;
|
||
yy = y * y;
|
||
xx = x * x;
|
||
|
||
// Iteration 14
|
||
if (xx + yy > T(4.0)) return i - 14;
|
||
|
||
y = x * y * T(2.0) + yC;
|
||
x = xx - yy + xC;
|
||
yy = y * y;
|
||
xx = x * x;
|
||
|
||
// Iteration 15
|
||
if (xx + yy > T(4.0)) return i - 15;
|
||
|
||
y = x * y * T(2.0) + yC;
|
||
x = xx - yy + xC;
|
||
yy = y * y;
|
||
xx = x * x;
|
||
|
||
// Iteration 16
|
||
if (xx + yy > T(4.0)) return i - 16;
|
||
|
||
y = x * y * T(2.0) + yC;
|
||
x = xx - yy + xC;
|
||
yy = y * y;
|
||
xx = x * x;
|
||
|
||
// Iteration 17
|
||
if (xx + yy > T(4.0)) return i - 17;
|
||
|
||
y = x * y * T(2.0) + yC;
|
||
x = xx - yy + xC;
|
||
yy = y * y;
|
||
xx = x * x;
|
||
|
||
// Iteration 18
|
||
if (xx + yy > T(4.0)) return i - 18;
|
||
|
||
y = x * y * T(2.0) + yC;
|
||
x = xx - yy + xC;
|
||
yy = y * y;
|
||
xx = x * x;
|
||
|
||
// Iteration 19
|
||
if (xx + yy > T(4.0)) return i - 19;
|
||
|
||
y = x * y * T(2.0) + yC;
|
||
x = xx - yy + xC;
|
||
yy = y * y;
|
||
xx = x * x;
|
||
|
||
// Iteration 20
|
||
i -= 20;
|
||
|
||
if ((i <= 0) || (xx + yy > T(4.0))) return i;
|
||
|
||
y = x * y * T(2.0) + yC;
|
||
x = xx - yy + xC;
|
||
yy = y * y;
|
||
xx = x * x;
|
||
} while (1);
|
||
} // CalcMandelbrot
|
||
|
||
#else
|
||
|
||
template <class T>
|
||
__device__ inline int CalcMandelbrot(const T xPos, const T yPos,
|
||
const T xJParam, const T yJParam,
|
||
const int crunch, const isJulia) {
|
||
T x, y, xx, yy, xC, yC;
|
||
|
||
if (isJulia) {
|
||
xC = xJParam;
|
||
yC = yJParam;
|
||
y = yPos;
|
||
x = xPos;
|
||
yy = y * y;
|
||
xx = x * x;
|
||
|
||
} else {
|
||
xC = xPos;
|
||
yC = yPos;
|
||
y = 0;
|
||
x = 0;
|
||
yy = 0;
|
||
xx = 0;
|
||
}
|
||
|
||
int i = crunch;
|
||
|
||
while (--i && (xx + yy < T(4.0))) {
|
||
y = x * y * T(2.0) + yC;
|
||
x = xx - yy + xC;
|
||
yy = y * y;
|
||
xx = x * x;
|
||
}
|
||
|
||
return i; // i > 0 ? crunch - i : 0;
|
||
} // CalcMandelbrot
|
||
|
||
#endif
|
||
|
||
// The core Mandelbrot calculation function in double-single precision
|
||
__device__ inline int CalcMandelbrotDS(const float xPos0, const float xPos1,
|
||
const float yPos0, const float yPos1,
|
||
const float xJParam, const float yJParam,
|
||
const int crunch, const bool isJulia) {
|
||
float xx0, xx1;
|
||
float yy0, yy1;
|
||
float sum0, sum1;
|
||
int i = crunch;
|
||
|
||
float x0, x1, y0, y1;
|
||
float xC0, xC1, yC0, yC1;
|
||
|
||
if (isJulia) {
|
||
xC0 = xJParam;
|
||
xC1 = 0;
|
||
yC0 = yJParam;
|
||
yC1 = 0;
|
||
y0 = yPos0; // y = yPos;
|
||
y1 = yPos1;
|
||
x0 = xPos0; // x = xPos;
|
||
x1 = xPos1;
|
||
dsmul(yy0, yy1, y0, y1, y0, y1); // yy = y * y;
|
||
dsmul(xx0, xx1, x0, x1, x0, x1); // xx = x * x;
|
||
} else {
|
||
xC0 = xPos0;
|
||
xC1 = xPos1;
|
||
yC0 = yPos0;
|
||
yC1 = yPos1;
|
||
y0 = 0; // y = 0 ;
|
||
y1 = 0;
|
||
x0 = 0; // x = 0 ;
|
||
x1 = 0;
|
||
yy0 = 0; // yy = 0 ;
|
||
yy1 = 0;
|
||
xx0 = 0; // xx = 0 ;
|
||
xx1 = 0;
|
||
}
|
||
|
||
dsadd(sum0, sum1, xx0, xx1, yy0, yy1); // sum = xx + yy;
|
||
|
||
while (--i && (sum0 + sum1 < 4.0f)) {
|
||
dsmul(y0, y1, x0, x1, y0, y1); // y = x * y * 2.0f + yC; // yC is yPos for
|
||
// Mandelbrot and it is yJParam for Julia
|
||
dsadd(y0, y1, y0, y1, y0, y1);
|
||
dsadd(y0, y1, y0, y1, yC0, yC1);
|
||
|
||
dssub(x0, x1, xx0, xx1, yy0, yy1); // x = xx - yy + xC; // xC is xPos for
|
||
// Mandelbrot and it is xJParam for
|
||
// Julia
|
||
dsadd(x0, x1, x0, x1, xC0, xC1);
|
||
|
||
dsmul(yy0, yy1, y0, y1, y0, y1); // yy = y * y;
|
||
dsmul(xx0, xx1, x0, x1, x0, x1); // xx = x * x;
|
||
dsadd(sum0, sum1, xx0, xx1, yy0, yy1); // sum = xx + yy;
|
||
}
|
||
|
||
return i;
|
||
} // CalcMandelbrotDS
|
||
|
||
// Determine if two pixel colors are within tolerance
|
||
__device__ inline int CheckColors(const uchar4 &color0, const uchar4 &color1) {
|
||
int x = color1.x - color0.x;
|
||
int y = color1.y - color0.y;
|
||
int z = color1.z - color0.z;
|
||
return (ABS(x) > 10) || (ABS(y) > 10) || (ABS(z) > 10);
|
||
} // CheckColors
|
||
|
||
// Increase the grid size by 1 if the image width or height does not divide
|
||
// evenly
|
||
// by the thread block dimensions
|
||
inline int iDivUp(int a, int b) {
|
||
return ((a % b) != 0) ? (a / b + 1) : (a / b);
|
||
} // iDivUp
|