mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-28 20:29:15 +08:00
70 lines
2.9 KiB
C++
70 lines
2.9 KiB
C++
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "convolutionSeparable_common.h"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Reference row convolution filter
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
extern "C" void convolutionRowCPU(float *h_Dst, float *h_Src, float *h_Kernel,
|
|
int imageW, int imageH, int kernelR) {
|
|
for (int y = 0; y < imageH; y++)
|
|
for (int x = 0; x < imageW; x++) {
|
|
float sum = 0;
|
|
|
|
for (int k = -kernelR; k <= kernelR; k++) {
|
|
int d = x + k;
|
|
|
|
if (d >= 0 && d < imageW)
|
|
sum += h_Src[y * imageW + d] * h_Kernel[kernelR - k];
|
|
}
|
|
|
|
h_Dst[y * imageW + x] = sum;
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Reference column convolution filter
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
extern "C" void convolutionColumnCPU(float *h_Dst, float *h_Src,
|
|
float *h_Kernel, int imageW, int imageH,
|
|
int kernelR) {
|
|
for (int y = 0; y < imageH; y++)
|
|
for (int x = 0; x < imageW; x++) {
|
|
float sum = 0;
|
|
|
|
for (int k = -kernelR; k <= kernelR; k++) {
|
|
int d = y + k;
|
|
|
|
if (d >= 0 && d < imageH)
|
|
sum += h_Src[d * imageW + x] * h_Kernel[kernelR - k];
|
|
}
|
|
|
|
h_Dst[y * imageW + x] = sum;
|
|
}
|
|
}
|