mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 22:05:49 +08:00
388 lines
16 KiB
C++
388 lines
16 KiB
C++
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* This sample queries the properties of the CUDA devices present
|
|
* in the system.
|
|
*/
|
|
|
|
// includes, system
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include <cuda.h>
|
|
#include <helper_cuda_drvapi.h>
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Program main
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
int main(int argc, char **argv) {
|
|
CUdevice dev;
|
|
int major = 0, minor = 0;
|
|
int deviceCount = 0;
|
|
char deviceName[256];
|
|
|
|
printf("%s Starting...\n\n", argv[0]);
|
|
|
|
// note your project will need to link with cuda.lib files on windows
|
|
printf("CUDA Device Query (Driver API) statically linked version \n");
|
|
|
|
checkCudaErrors(cuInit(0));
|
|
|
|
checkCudaErrors(cuDeviceGetCount(&deviceCount));
|
|
|
|
// This function call returns 0 if there are no CUDA capable devices.
|
|
if (deviceCount == 0) {
|
|
printf("There are no available device(s) that support CUDA\n");
|
|
} else {
|
|
printf("Detected %d CUDA Capable device(s)\n", deviceCount);
|
|
}
|
|
|
|
for (dev = 0; dev < deviceCount; ++dev) {
|
|
checkCudaErrors(cuDeviceGetAttribute(
|
|
&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, dev));
|
|
checkCudaErrors(cuDeviceGetAttribute(
|
|
&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, dev));
|
|
|
|
checkCudaErrors(cuDeviceGetName(deviceName, 256, dev));
|
|
|
|
printf("\nDevice %d: \"%s\"\n", dev, deviceName);
|
|
|
|
int driverVersion = 0;
|
|
checkCudaErrors(cuDriverGetVersion(&driverVersion));
|
|
printf(" CUDA Driver Version: %d.%d\n",
|
|
driverVersion / 1000, (driverVersion % 100) / 10);
|
|
printf(" CUDA Capability Major/Minor version number: %d.%d\n", major,
|
|
minor);
|
|
|
|
size_t totalGlobalMem;
|
|
checkCudaErrors(cuDeviceTotalMem(&totalGlobalMem, dev));
|
|
|
|
char msg[256];
|
|
SPRINTF(msg,
|
|
" Total amount of global memory: %.0f MBytes "
|
|
"(%llu bytes)\n",
|
|
(float)totalGlobalMem / 1048576.0f,
|
|
(unsigned long long)totalGlobalMem);
|
|
printf("%s", msg);
|
|
|
|
int multiProcessorCount;
|
|
getCudaAttribute<int>(&multiProcessorCount,
|
|
CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, dev);
|
|
|
|
printf(" (%2d) Multiprocessors, (%3d) CUDA Cores/MP: %d CUDA Cores\n",
|
|
multiProcessorCount, _ConvertSMVer2CoresDRV(major, minor),
|
|
_ConvertSMVer2CoresDRV(major, minor) * multiProcessorCount);
|
|
|
|
int clockRate;
|
|
getCudaAttribute<int>(&clockRate, CU_DEVICE_ATTRIBUTE_CLOCK_RATE, dev);
|
|
printf(
|
|
" GPU Max Clock rate: %.0f MHz (%0.2f "
|
|
"GHz)\n",
|
|
clockRate * 1e-3f, clockRate * 1e-6f);
|
|
int memoryClock;
|
|
getCudaAttribute<int>(&memoryClock, CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE,
|
|
dev);
|
|
printf(" Memory Clock rate: %.0f Mhz\n",
|
|
memoryClock * 1e-3f);
|
|
int memBusWidth;
|
|
getCudaAttribute<int>(&memBusWidth,
|
|
CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, dev);
|
|
printf(" Memory Bus Width: %d-bit\n",
|
|
memBusWidth);
|
|
int L2CacheSize;
|
|
getCudaAttribute<int>(&L2CacheSize, CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE, dev);
|
|
|
|
if (L2CacheSize) {
|
|
printf(" L2 Cache Size: %d bytes\n",
|
|
L2CacheSize);
|
|
}
|
|
|
|
int maxTex1D, maxTex2D[2], maxTex3D[3];
|
|
getCudaAttribute<int>(&maxTex1D,
|
|
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_WIDTH, dev);
|
|
getCudaAttribute<int>(&maxTex2D[0],
|
|
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_WIDTH, dev);
|
|
getCudaAttribute<int>(&maxTex2D[1],
|
|
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_HEIGHT, dev);
|
|
getCudaAttribute<int>(&maxTex3D[0],
|
|
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_WIDTH, dev);
|
|
getCudaAttribute<int>(&maxTex3D[1],
|
|
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_HEIGHT, dev);
|
|
getCudaAttribute<int>(&maxTex3D[2],
|
|
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_DEPTH, dev);
|
|
printf(
|
|
" Max Texture Dimension Sizes 1D=(%d) 2D=(%d, %d) "
|
|
"3D=(%d, %d, %d)\n",
|
|
maxTex1D, maxTex2D[0], maxTex2D[1], maxTex3D[0], maxTex3D[1],
|
|
maxTex3D[2]);
|
|
|
|
int maxTex1DLayered[2];
|
|
getCudaAttribute<int>(&maxTex1DLayered[0],
|
|
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LAYERED_WIDTH,
|
|
dev);
|
|
getCudaAttribute<int>(&maxTex1DLayered[1],
|
|
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LAYERED_LAYERS,
|
|
dev);
|
|
printf(
|
|
" Maximum Layered 1D Texture Size, (num) layers 1D=(%d), %d layers\n",
|
|
maxTex1DLayered[0], maxTex1DLayered[1]);
|
|
|
|
int maxTex2DLayered[3];
|
|
getCudaAttribute<int>(&maxTex2DLayered[0],
|
|
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_WIDTH,
|
|
dev);
|
|
getCudaAttribute<int>(&maxTex2DLayered[1],
|
|
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_HEIGHT,
|
|
dev);
|
|
getCudaAttribute<int>(&maxTex2DLayered[2],
|
|
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_LAYERS,
|
|
dev);
|
|
printf(
|
|
" Maximum Layered 2D Texture Size, (num) layers 2D=(%d, %d), %d "
|
|
"layers\n",
|
|
maxTex2DLayered[0], maxTex2DLayered[1], maxTex2DLayered[2]);
|
|
|
|
int totalConstantMemory;
|
|
getCudaAttribute<int>(&totalConstantMemory,
|
|
CU_DEVICE_ATTRIBUTE_TOTAL_CONSTANT_MEMORY, dev);
|
|
printf(" Total amount of constant memory: %u bytes\n",
|
|
totalConstantMemory);
|
|
int sharedMemPerBlock;
|
|
getCudaAttribute<int>(&sharedMemPerBlock,
|
|
CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK, dev);
|
|
printf(" Total amount of shared memory per block: %u bytes\n",
|
|
sharedMemPerBlock);
|
|
int regsPerBlock;
|
|
getCudaAttribute<int>(®sPerBlock,
|
|
CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_BLOCK, dev);
|
|
printf(" Total number of registers available per block: %d\n",
|
|
regsPerBlock);
|
|
int warpSize;
|
|
getCudaAttribute<int>(&warpSize, CU_DEVICE_ATTRIBUTE_WARP_SIZE, dev);
|
|
printf(" Warp size: %d\n", warpSize);
|
|
int maxThreadsPerMultiProcessor;
|
|
getCudaAttribute<int>(&maxThreadsPerMultiProcessor,
|
|
CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR,
|
|
dev);
|
|
printf(" Maximum number of threads per multiprocessor: %d\n",
|
|
maxThreadsPerMultiProcessor);
|
|
int maxThreadsPerBlock;
|
|
getCudaAttribute<int>(&maxThreadsPerBlock,
|
|
CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK, dev);
|
|
printf(" Maximum number of threads per block: %d\n",
|
|
maxThreadsPerBlock);
|
|
|
|
int blockDim[3];
|
|
getCudaAttribute<int>(&blockDim[0], CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X,
|
|
dev);
|
|
getCudaAttribute<int>(&blockDim[1], CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y,
|
|
dev);
|
|
getCudaAttribute<int>(&blockDim[2], CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z,
|
|
dev);
|
|
printf(" Max dimension size of a thread block (x,y,z): (%d, %d, %d)\n",
|
|
blockDim[0], blockDim[1], blockDim[2]);
|
|
int gridDim[3];
|
|
getCudaAttribute<int>(&gridDim[0], CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X, dev);
|
|
getCudaAttribute<int>(&gridDim[1], CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y, dev);
|
|
getCudaAttribute<int>(&gridDim[2], CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z, dev);
|
|
printf(" Max dimension size of a grid size (x,y,z): (%d, %d, %d)\n",
|
|
gridDim[0], gridDim[1], gridDim[2]);
|
|
|
|
int textureAlign;
|
|
getCudaAttribute<int>(&textureAlign, CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT,
|
|
dev);
|
|
printf(" Texture alignment: %u bytes\n",
|
|
textureAlign);
|
|
|
|
int memPitch;
|
|
getCudaAttribute<int>(&memPitch, CU_DEVICE_ATTRIBUTE_MAX_PITCH, dev);
|
|
printf(" Maximum memory pitch: %u bytes\n",
|
|
memPitch);
|
|
|
|
int gpuOverlap;
|
|
getCudaAttribute<int>(&gpuOverlap, CU_DEVICE_ATTRIBUTE_GPU_OVERLAP, dev);
|
|
|
|
int asyncEngineCount;
|
|
getCudaAttribute<int>(&asyncEngineCount,
|
|
CU_DEVICE_ATTRIBUTE_ASYNC_ENGINE_COUNT, dev);
|
|
printf(
|
|
" Concurrent copy and kernel execution: %s with %d copy "
|
|
"engine(s)\n",
|
|
(gpuOverlap ? "Yes" : "No"), asyncEngineCount);
|
|
|
|
int kernelExecTimeoutEnabled;
|
|
getCudaAttribute<int>(&kernelExecTimeoutEnabled,
|
|
CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT, dev);
|
|
printf(" Run time limit on kernels: %s\n",
|
|
kernelExecTimeoutEnabled ? "Yes" : "No");
|
|
int integrated;
|
|
getCudaAttribute<int>(&integrated, CU_DEVICE_ATTRIBUTE_INTEGRATED, dev);
|
|
printf(" Integrated GPU sharing Host Memory: %s\n",
|
|
integrated ? "Yes" : "No");
|
|
int canMapHostMemory;
|
|
getCudaAttribute<int>(&canMapHostMemory,
|
|
CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY, dev);
|
|
printf(" Support host page-locked memory mapping: %s\n",
|
|
canMapHostMemory ? "Yes" : "No");
|
|
|
|
int concurrentKernels;
|
|
getCudaAttribute<int>(&concurrentKernels,
|
|
CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS, dev);
|
|
printf(" Concurrent kernel execution: %s\n",
|
|
concurrentKernels ? "Yes" : "No");
|
|
|
|
int surfaceAlignment;
|
|
getCudaAttribute<int>(&surfaceAlignment,
|
|
CU_DEVICE_ATTRIBUTE_SURFACE_ALIGNMENT, dev);
|
|
printf(" Alignment requirement for Surfaces: %s\n",
|
|
surfaceAlignment ? "Yes" : "No");
|
|
|
|
int eccEnabled;
|
|
getCudaAttribute<int>(&eccEnabled, CU_DEVICE_ATTRIBUTE_ECC_ENABLED, dev);
|
|
printf(" Device has ECC support: %s\n",
|
|
eccEnabled ? "Enabled" : "Disabled");
|
|
|
|
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
|
|
int tccDriver;
|
|
getCudaAttribute<int>(&tccDriver, CU_DEVICE_ATTRIBUTE_TCC_DRIVER, dev);
|
|
printf(" CUDA Device Driver Mode (TCC or WDDM): %s\n",
|
|
tccDriver ? "TCC (Tesla Compute Cluster Driver)"
|
|
: "WDDM (Windows Display Driver Model)");
|
|
#endif
|
|
|
|
int unifiedAddressing;
|
|
getCudaAttribute<int>(&unifiedAddressing,
|
|
CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING, dev);
|
|
printf(" Device supports Unified Addressing (UVA): %s\n",
|
|
unifiedAddressing ? "Yes" : "No");
|
|
|
|
int managedMemory;
|
|
getCudaAttribute<int>(&managedMemory, CU_DEVICE_ATTRIBUTE_MANAGED_MEMORY,
|
|
dev);
|
|
printf(" Device supports Managed Memory: %s\n",
|
|
managedMemory ? "Yes" : "No");
|
|
|
|
int computePreemption;
|
|
getCudaAttribute<int>(&computePreemption,
|
|
CU_DEVICE_ATTRIBUTE_COMPUTE_PREEMPTION_SUPPORTED,
|
|
dev);
|
|
printf(" Device supports Compute Preemption: %s\n",
|
|
computePreemption ? "Yes" : "No");
|
|
|
|
int cooperativeLaunch;
|
|
getCudaAttribute<int>(&cooperativeLaunch,
|
|
CU_DEVICE_ATTRIBUTE_COOPERATIVE_LAUNCH, dev);
|
|
printf(" Supports Cooperative Kernel Launch: %s\n",
|
|
cooperativeLaunch ? "Yes" : "No");
|
|
|
|
int cooperativeMultiDevLaunch;
|
|
getCudaAttribute<int>(&cooperativeMultiDevLaunch,
|
|
CU_DEVICE_ATTRIBUTE_COOPERATIVE_MULTI_DEVICE_LAUNCH,
|
|
dev);
|
|
printf(" Supports MultiDevice Co-op Kernel Launch: %s\n",
|
|
cooperativeMultiDevLaunch ? "Yes" : "No");
|
|
|
|
int pciDomainID, pciBusID, pciDeviceID;
|
|
getCudaAttribute<int>(&pciDomainID, CU_DEVICE_ATTRIBUTE_PCI_DOMAIN_ID, dev);
|
|
getCudaAttribute<int>(&pciBusID, CU_DEVICE_ATTRIBUTE_PCI_BUS_ID, dev);
|
|
getCudaAttribute<int>(&pciDeviceID, CU_DEVICE_ATTRIBUTE_PCI_DEVICE_ID, dev);
|
|
printf(" Device PCI Domain ID / Bus ID / location ID: %d / %d / %d\n",
|
|
pciDomainID, pciBusID, pciDeviceID);
|
|
|
|
const char *sComputeMode[] = {
|
|
"Default (multiple host threads can use ::cudaSetDevice() with device "
|
|
"simultaneously)",
|
|
"Exclusive (only one host thread in one process is able to use "
|
|
"::cudaSetDevice() with this device)",
|
|
"Prohibited (no host thread can use ::cudaSetDevice() with this "
|
|
"device)",
|
|
"Exclusive Process (many threads in one process is able to use "
|
|
"::cudaSetDevice() with this device)",
|
|
"Unknown", NULL};
|
|
|
|
int computeMode;
|
|
getCudaAttribute<int>(&computeMode, CU_DEVICE_ATTRIBUTE_COMPUTE_MODE, dev);
|
|
printf(" Compute Mode:\n");
|
|
printf(" < %s >\n", sComputeMode[computeMode]);
|
|
}
|
|
|
|
// If there are 2 or more GPUs, query to determine whether RDMA is supported
|
|
if (deviceCount >= 2) {
|
|
int gpuid[64]; // we want to find the first two GPUs that can support P2P
|
|
int gpu_p2p_count = 0;
|
|
int tccDriver = 0;
|
|
|
|
for (int i = 0; i < deviceCount; i++) {
|
|
checkCudaErrors(cuDeviceGetAttribute(
|
|
&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, i));
|
|
checkCudaErrors(cuDeviceGetAttribute(
|
|
&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, i));
|
|
getCudaAttribute<int>(&tccDriver, CU_DEVICE_ATTRIBUTE_TCC_DRIVER, i);
|
|
|
|
// Only boards based on Fermi or later can support P2P
|
|
if ((major >= 2)
|
|
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
|
|
// on Windows (64-bit), the Tesla Compute Cluster driver for windows
|
|
// must be enabled to support this
|
|
&& tccDriver
|
|
#endif
|
|
) {
|
|
// This is an array of P2P capable GPUs
|
|
gpuid[gpu_p2p_count++] = i;
|
|
}
|
|
}
|
|
|
|
// Show all the combinations of support P2P GPUs
|
|
int can_access_peer;
|
|
char deviceName0[256], deviceName1[256];
|
|
|
|
if (gpu_p2p_count >= 2) {
|
|
for (int i = 0; i < gpu_p2p_count; i++) {
|
|
for (int j = 0; j < gpu_p2p_count; j++) {
|
|
if (gpuid[i] == gpuid[j]) {
|
|
continue;
|
|
}
|
|
checkCudaErrors(
|
|
cuDeviceCanAccessPeer(&can_access_peer, gpuid[i], gpuid[j]));
|
|
checkCudaErrors(cuDeviceGetName(deviceName0, 256, gpuid[i]));
|
|
checkCudaErrors(cuDeviceGetName(deviceName1, 256, gpuid[j]));
|
|
printf(
|
|
"> Peer-to-Peer (P2P) access from %s (GPU%d) -> %s (GPU%d) : "
|
|
"%s\n",
|
|
deviceName0, gpuid[i], deviceName1, gpuid[j],
|
|
can_access_peer ? "Yes" : "No");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
printf("Result = PASS\n");
|
|
|
|
exit(EXIT_SUCCESS);
|
|
}
|