mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-12-01 15:29:16 +08:00
141 lines
5.1 KiB
C++
141 lines
5.1 KiB
C++
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
|
|
#include <curand.h>
|
|
|
|
//#include "curand_kernel.h"
|
|
#include "helper_cuda.h"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Common types
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
#include "MonteCarlo_common.h"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Black-Scholes formula for Monte Carlo results validation
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
#define A1 0.31938153
|
|
#define A2 -0.356563782
|
|
#define A3 1.781477937
|
|
#define A4 -1.821255978
|
|
#define A5 1.330274429
|
|
#define RSQRT2PI 0.39894228040143267793994605993438
|
|
|
|
// Polynomial approximation of
|
|
// cumulative normal distribution function
|
|
double CND(double d) {
|
|
double K = 1.0 / (1.0 + 0.2316419 * fabs(d));
|
|
|
|
double cnd = RSQRT2PI * exp(-0.5 * d * d) *
|
|
(K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5)))));
|
|
|
|
if (d > 0) cnd = 1.0 - cnd;
|
|
|
|
return cnd;
|
|
}
|
|
|
|
// Black-Scholes formula for call value
|
|
extern "C" void BlackScholesCall(float &callValue, TOptionData optionData) {
|
|
double S = optionData.S;
|
|
double X = optionData.X;
|
|
double T = optionData.T;
|
|
double R = optionData.R;
|
|
double V = optionData.V;
|
|
|
|
double sqrtT = sqrt(T);
|
|
double d1 = (log(S / X) + (R + 0.5 * V * V) * T) / (V * sqrtT);
|
|
double d2 = d1 - V * sqrtT;
|
|
double CNDD1 = CND(d1);
|
|
double CNDD2 = CND(d2);
|
|
double expRT = exp(-R * T);
|
|
|
|
callValue = (float)(S * CNDD1 - X * expRT * CNDD2);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// CPU Monte Carlo
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
static double endCallValue(double S, double X, double r, double MuByT,
|
|
double VBySqrtT) {
|
|
double callValue = S * exp(MuByT + VBySqrtT * r) - X;
|
|
return (callValue > 0) ? callValue : 0;
|
|
}
|
|
|
|
extern "C" void MonteCarloCPU(TOptionValue &callValue, TOptionData optionData,
|
|
float *h_Samples, int pathN) {
|
|
const double S = optionData.S;
|
|
const double X = optionData.X;
|
|
const double T = optionData.T;
|
|
const double R = optionData.R;
|
|
const double V = optionData.V;
|
|
const double MuByT = (R - 0.5 * V * V) * T;
|
|
const double VBySqrtT = V * sqrt(T);
|
|
|
|
float *samples;
|
|
curandGenerator_t gen;
|
|
|
|
checkCudaErrors(curandCreateGeneratorHost(&gen, CURAND_RNG_PSEUDO_DEFAULT));
|
|
unsigned long long seed = 1234ULL;
|
|
checkCudaErrors(curandSetPseudoRandomGeneratorSeed(gen, seed));
|
|
|
|
if (h_Samples != NULL) {
|
|
samples = h_Samples;
|
|
} else {
|
|
samples = (float *)malloc(pathN * sizeof(float));
|
|
checkCudaErrors(curandGenerateNormal(gen, samples, pathN, 0.0, 1.0));
|
|
}
|
|
|
|
// for(int i=0; i<10; i++) printf("CPU sample = %f\n", samples[i]);
|
|
|
|
double sum = 0, sum2 = 0;
|
|
|
|
for (int pos = 0; pos < pathN; pos++) {
|
|
double sample = samples[pos];
|
|
double callValue = endCallValue(S, X, sample, MuByT, VBySqrtT);
|
|
sum += callValue;
|
|
sum2 += callValue * callValue;
|
|
}
|
|
|
|
if (h_Samples == NULL) free(samples);
|
|
|
|
checkCudaErrors(curandDestroyGenerator(gen));
|
|
|
|
// Derive average from the total sum and discount by riskfree rate
|
|
callValue.Expected = (float)(exp(-R * T) * sum / (double)pathN);
|
|
// Standard deviation
|
|
double stdDev = sqrt(((double)pathN * sum2 - sum * sum) /
|
|
((double)pathN * (double)(pathN - 1)));
|
|
// Confidence width; in 95% of all cases theoretical value lies within these
|
|
// borders
|
|
callValue.Confidence =
|
|
(float)(exp(-R * T) * 1.96 * stdDev / sqrt((double)pathN));
|
|
}
|