mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-28 15:29:17 +08:00
182 lines
6.9 KiB
Plaintext
182 lines
6.9 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "common.h"
|
|
#include <cooperative_groups.h>
|
|
|
|
namespace cg = cooperative_groups;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
/// \brief one iteration of classical Horn-Schunck method, CUDA kernel.
|
|
///
|
|
/// It is one iteration of Jacobi method for a corresponding linear system.
|
|
/// Template parameters are describe CTA size
|
|
/// \param[in] du0 current horizontal displacement approximation
|
|
/// \param[in] dv0 current vertical displacement approximation
|
|
/// \param[in] Ix image x derivative
|
|
/// \param[in] Iy image y derivative
|
|
/// \param[in] Iz temporal derivative
|
|
/// \param[in] w width
|
|
/// \param[in] h height
|
|
/// \param[in] s stride
|
|
/// \param[in] alpha degree of smoothness
|
|
/// \param[out] du1 new horizontal displacement approximation
|
|
/// \param[out] dv1 new vertical displacement approximation
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
template <int bx, int by>
|
|
__global__ void JacobiIteration(const float *du0, const float *dv0,
|
|
const float *Ix, const float *Iy,
|
|
const float *Iz, int w, int h, int s,
|
|
float alpha, float *du1, float *dv1) {
|
|
// Handle to thread block group
|
|
cg::thread_block cta = cg::this_thread_block();
|
|
|
|
volatile __shared__ float du[(bx + 2) * (by + 2)];
|
|
volatile __shared__ float dv[(bx + 2) * (by + 2)];
|
|
|
|
const int ix = threadIdx.x + blockIdx.x * blockDim.x;
|
|
const int iy = threadIdx.y + blockIdx.y * blockDim.y;
|
|
|
|
// position within global memory array
|
|
const int pos = min(ix, w - 1) + min(iy, h - 1) * s;
|
|
|
|
// position within shared memory array
|
|
const int shMemPos = threadIdx.x + 1 + (threadIdx.y + 1) * (bx + 2);
|
|
|
|
// Load data to shared memory.
|
|
// load tile being processed
|
|
du[shMemPos] = du0[pos];
|
|
dv[shMemPos] = dv0[pos];
|
|
|
|
// load necessary neighbouring elements
|
|
// We clamp out-of-range coordinates.
|
|
// It is equivalent to mirroring
|
|
// because we access data only one step away from borders.
|
|
if (threadIdx.y == 0) {
|
|
// beginning of the tile
|
|
const int bsx = blockIdx.x * blockDim.x;
|
|
const int bsy = blockIdx.y * blockDim.y;
|
|
// element position within matrix
|
|
int x, y;
|
|
// element position within linear array
|
|
// gm - global memory
|
|
// sm - shared memory
|
|
int gmPos, smPos;
|
|
|
|
x = min(bsx + threadIdx.x, w - 1);
|
|
// row just below the tile
|
|
y = max(bsy - 1, 0);
|
|
gmPos = y * s + x;
|
|
smPos = threadIdx.x + 1;
|
|
du[smPos] = du0[gmPos];
|
|
dv[smPos] = dv0[gmPos];
|
|
|
|
// row above the tile
|
|
y = min(bsy + by, h - 1);
|
|
smPos += (by + 1) * (bx + 2);
|
|
gmPos = y * s + x;
|
|
du[smPos] = du0[gmPos];
|
|
dv[smPos] = dv0[gmPos];
|
|
} else if (threadIdx.y == 1) {
|
|
// beginning of the tile
|
|
const int bsx = blockIdx.x * blockDim.x;
|
|
const int bsy = blockIdx.y * blockDim.y;
|
|
// element position within matrix
|
|
int x, y;
|
|
// element position within linear array
|
|
// gm - global memory
|
|
// sm - shared memory
|
|
int gmPos, smPos;
|
|
|
|
y = min(bsy + threadIdx.x, h - 1);
|
|
// column to the left
|
|
x = max(bsx - 1, 0);
|
|
smPos = bx + 2 + threadIdx.x * (bx + 2);
|
|
gmPos = x + y * s;
|
|
|
|
// check if we are within tile
|
|
if (threadIdx.x < by) {
|
|
du[smPos] = du0[gmPos];
|
|
dv[smPos] = dv0[gmPos];
|
|
// column to the right
|
|
x = min(bsx + bx, w - 1);
|
|
gmPos = y * s + x;
|
|
smPos += bx + 1;
|
|
du[smPos] = du0[gmPos];
|
|
dv[smPos] = dv0[gmPos];
|
|
}
|
|
}
|
|
|
|
cg::sync(cta);
|
|
|
|
if (ix >= w || iy >= h) return;
|
|
|
|
// now all necessary data are loaded to shared memory
|
|
int left, right, up, down;
|
|
left = shMemPos - 1;
|
|
right = shMemPos + 1;
|
|
up = shMemPos + bx + 2;
|
|
down = shMemPos - bx - 2;
|
|
|
|
float sumU = (du[left] + du[right] + du[up] + du[down]) * 0.25f;
|
|
float sumV = (dv[left] + dv[right] + dv[up] + dv[down]) * 0.25f;
|
|
|
|
float frac = (Ix[pos] * sumU + Iy[pos] * sumV + Iz[pos]) /
|
|
(Ix[pos] * Ix[pos] + Iy[pos] * Iy[pos] + alpha);
|
|
|
|
du1[pos] = sumU - Ix[pos] * frac;
|
|
dv1[pos] = sumV - Iy[pos] * frac;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
/// \brief one iteration of classical Horn-Schunck method, CUDA kernel wrapper.
|
|
///
|
|
/// It is one iteration of Jacobi method for a corresponding linear system.
|
|
/// \param[in] du0 current horizontal displacement approximation
|
|
/// \param[in] dv0 current vertical displacement approximation
|
|
/// \param[in] Ix image x derivative
|
|
/// \param[in] Iy image y derivative
|
|
/// \param[in] Iz temporal derivative
|
|
/// \param[in] w width
|
|
/// \param[in] h height
|
|
/// \param[in] s stride
|
|
/// \param[in] alpha degree of smoothness
|
|
/// \param[out] du1 new horizontal displacement approximation
|
|
/// \param[out] dv1 new vertical displacement approximation
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
static void SolveForUpdate(const float *du0, const float *dv0, const float *Ix,
|
|
const float *Iy, const float *Iz, int w, int h,
|
|
int s, float alpha, float *du1, float *dv1) {
|
|
// CTA size
|
|
dim3 threads(32, 6);
|
|
// grid size
|
|
dim3 blocks(iDivUp(w, threads.x), iDivUp(h, threads.y));
|
|
|
|
JacobiIteration<32, 6><<<blocks, threads>>>(du0, dv0, Ix, Iy, Iz, w, h, s,
|
|
alpha, du1, dv1);
|
|
}
|