cuda-samples/Samples/2_Concepts_and_Techniques/particles/particles_kernel_impl.cuh
2022-01-13 11:35:24 +05:30

316 lines
10 KiB
Plaintext

/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* CUDA particle system kernel code.
*/
#ifndef _PARTICLES_KERNEL_H_
#define _PARTICLES_KERNEL_H_
#include <stdio.h>
#include <math.h>
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
#include "helper_math.h"
#include "math_constants.h"
#include "particles_kernel.cuh"
// simulation parameters in constant memory
__constant__ SimParams params;
struct integrate_functor {
float deltaTime;
__host__ __device__ integrate_functor(float delta_time)
: deltaTime(delta_time) {}
template <typename Tuple>
__device__ void operator()(Tuple t) {
volatile float4 posData = thrust::get<0>(t);
volatile float4 velData = thrust::get<1>(t);
float3 pos = make_float3(posData.x, posData.y, posData.z);
float3 vel = make_float3(velData.x, velData.y, velData.z);
vel += params.gravity * deltaTime;
vel *= params.globalDamping;
// new position = old position + velocity * deltaTime
pos += vel * deltaTime;
// set this to zero to disable collisions with cube sides
#if 1
if (pos.x > 1.0f - params.particleRadius) {
pos.x = 1.0f - params.particleRadius;
vel.x *= params.boundaryDamping;
}
if (pos.x < -1.0f + params.particleRadius) {
pos.x = -1.0f + params.particleRadius;
vel.x *= params.boundaryDamping;
}
if (pos.y > 1.0f - params.particleRadius) {
pos.y = 1.0f - params.particleRadius;
vel.y *= params.boundaryDamping;
}
if (pos.z > 1.0f - params.particleRadius) {
pos.z = 1.0f - params.particleRadius;
vel.z *= params.boundaryDamping;
}
if (pos.z < -1.0f + params.particleRadius) {
pos.z = -1.0f + params.particleRadius;
vel.z *= params.boundaryDamping;
}
#endif
if (pos.y < -1.0f + params.particleRadius) {
pos.y = -1.0f + params.particleRadius;
vel.y *= params.boundaryDamping;
}
// store new position and velocity
thrust::get<0>(t) = make_float4(pos, posData.w);
thrust::get<1>(t) = make_float4(vel, velData.w);
}
};
// calculate position in uniform grid
__device__ int3 calcGridPos(float3 p) {
int3 gridPos;
gridPos.x = floorf((p.x - params.worldOrigin.x) / params.cellSize.x);
gridPos.y = floorf((p.y - params.worldOrigin.y) / params.cellSize.y);
gridPos.z = floorf((p.z - params.worldOrigin.z) / params.cellSize.z);
return gridPos;
}
// calculate address in grid from position (clamping to edges)
__device__ uint calcGridHash(int3 gridPos) {
gridPos.x = gridPos.x &
(params.gridSize.x - 1); // wrap grid, assumes size is power of 2
gridPos.y = gridPos.y & (params.gridSize.y - 1);
gridPos.z = gridPos.z & (params.gridSize.z - 1);
return __umul24(__umul24(gridPos.z, params.gridSize.y), params.gridSize.x) +
__umul24(gridPos.y, params.gridSize.x) + gridPos.x;
}
// calculate grid hash value for each particle
__global__ void calcHashD(uint *gridParticleHash, // output
uint *gridParticleIndex, // output
float4 *pos, // input: positions
uint numParticles) {
uint index = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
if (index >= numParticles) return;
volatile float4 p = pos[index];
// get address in grid
int3 gridPos = calcGridPos(make_float3(p.x, p.y, p.z));
uint hash = calcGridHash(gridPos);
// store grid hash and particle index
gridParticleHash[index] = hash;
gridParticleIndex[index] = index;
}
// rearrange particle data into sorted order, and find the start of each cell
// in the sorted hash array
__global__ void reorderDataAndFindCellStartD(
uint *cellStart, // output: cell start index
uint *cellEnd, // output: cell end index
float4 *sortedPos, // output: sorted positions
float4 *sortedVel, // output: sorted velocities
uint *gridParticleHash, // input: sorted grid hashes
uint *gridParticleIndex, // input: sorted particle indices
float4 *oldPos, // input: sorted position array
float4 *oldVel, // input: sorted velocity array
uint numParticles) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
extern __shared__ uint sharedHash[]; // blockSize + 1 elements
uint index = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
uint hash;
// handle case when no. of particles not multiple of block size
if (index < numParticles) {
hash = gridParticleHash[index];
// Load hash data into shared memory so that we can look
// at neighboring particle's hash value without loading
// two hash values per thread
sharedHash[threadIdx.x + 1] = hash;
if (index > 0 && threadIdx.x == 0) {
// first thread in block must load neighbor particle hash
sharedHash[0] = gridParticleHash[index - 1];
}
}
cg::sync(cta);
if (index < numParticles) {
// If this particle has a different cell index to the previous
// particle then it must be the first particle in the cell,
// so store the index of this particle in the cell.
// As it isn't the first particle, it must also be the cell end of
// the previous particle's cell
if (index == 0 || hash != sharedHash[threadIdx.x]) {
cellStart[hash] = index;
if (index > 0) cellEnd[sharedHash[threadIdx.x]] = index;
}
if (index == numParticles - 1) {
cellEnd[hash] = index + 1;
}
// Now use the sorted index to reorder the pos and vel data
uint sortedIndex = gridParticleIndex[index];
float4 pos = oldPos[sortedIndex];
float4 vel = oldVel[sortedIndex];
sortedPos[index] = pos;
sortedVel[index] = vel;
}
}
// collide two spheres using DEM method
__device__ float3 collideSpheres(float3 posA, float3 posB, float3 velA,
float3 velB, float radiusA, float radiusB,
float attraction) {
// calculate relative position
float3 relPos = posB - posA;
float dist = length(relPos);
float collideDist = radiusA + radiusB;
float3 force = make_float3(0.0f);
if (dist < collideDist) {
float3 norm = relPos / dist;
// relative velocity
float3 relVel = velB - velA;
// relative tangential velocity
float3 tanVel = relVel - (dot(relVel, norm) * norm);
// spring force
force = -params.spring * (collideDist - dist) * norm;
// dashpot (damping) force
force += params.damping * relVel;
// tangential shear force
force += params.shear * tanVel;
// attraction
force += attraction * relPos;
}
return force;
}
// collide a particle against all other particles in a given cell
__device__ float3 collideCell(int3 gridPos, uint index, float3 pos, float3 vel,
float4 *oldPos, float4 *oldVel, uint *cellStart,
uint *cellEnd) {
uint gridHash = calcGridHash(gridPos);
// get start of bucket for this cell
uint startIndex = cellStart[gridHash];
float3 force = make_float3(0.0f);
if (startIndex != 0xffffffff) // cell is not empty
{
// iterate over particles in this cell
uint endIndex = cellEnd[gridHash];
for (uint j = startIndex; j < endIndex; j++) {
if (j != index) // check not colliding with self
{
float3 pos2 = make_float3(oldPos[j]);
float3 vel2 = make_float3(oldVel[j]);
// collide two spheres
force += collideSpheres(pos, pos2, vel, vel2, params.particleRadius,
params.particleRadius, params.attraction);
}
}
}
return force;
}
__global__ void collideD(
float4 *newVel, // output: new velocity
float4 *oldPos, // input: sorted positions
float4 *oldVel, // input: sorted velocities
uint *gridParticleIndex, // input: sorted particle indices
uint *cellStart, uint *cellEnd, uint numParticles) {
uint index = __mul24(blockIdx.x, blockDim.x) + threadIdx.x;
if (index >= numParticles) return;
// read particle data from sorted arrays
float3 pos = make_float3(oldPos[index]);
float3 vel = make_float3(oldVel[index]);
// get address in grid
int3 gridPos = calcGridPos(pos);
// examine neighbouring cells
float3 force = make_float3(0.0f);
for (int z = -1; z <= 1; z++) {
for (int y = -1; y <= 1; y++) {
for (int x = -1; x <= 1; x++) {
int3 neighbourPos = gridPos + make_int3(x, y, z);
force += collideCell(neighbourPos, index, pos, vel, oldPos, oldVel,
cellStart, cellEnd);
}
}
}
// collide with cursor sphere
force += collideSpheres(pos, params.colliderPos, vel,
make_float3(0.0f, 0.0f, 0.0f), params.particleRadius,
params.colliderRadius, 0.0f);
// write new velocity back to original unsorted location
uint originalIndex = gridParticleIndex[index];
newVel[originalIndex] = make_float4(vel + force, 0.0f);
}
#endif