mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-28 19:09:19 +08:00
703 lines
24 KiB
C++
703 lines
24 KiB
C++
/* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Test three linear solvers, including Cholesky, LU and QR.
|
|
* The user has to prepare a sparse matrix of "matrix market format" (with
|
|
extension .mtx).
|
|
* For example, the user can download matrices in Florida Sparse Matrix
|
|
Collection.
|
|
* (http://www.cise.ufl.edu/research/sparse/matrices/)
|
|
*
|
|
* The user needs to choose a solver by the switch -R<solver> and
|
|
* to provide the path of the matrix by the switch -F<file>, then
|
|
* the program solves
|
|
* A*x = b
|
|
* and reports relative error
|
|
* |b-A*x|/(|A|*|x|+|b|)
|
|
*
|
|
* How does it work?
|
|
* The example solves A*x = b by the following steps
|
|
* step 1: B = A(Q,Q)
|
|
* Q is the ordering to minimize zero fill-in.
|
|
* The user can choose symrcm or symamd.
|
|
* step 2: solve B*z = Q*b
|
|
* step 3: x = inv(Q)*z
|
|
*
|
|
* Above three steps can be combined by the formula
|
|
* (Q*A*Q')*(Q*x) = (Q*b)
|
|
*
|
|
* The elapsed time is also reported so the user can compare efficiency of
|
|
different solvers.
|
|
*
|
|
* How to use
|
|
/cuSolverSp_LinearSolver // Default: Cholesky, symrcm &
|
|
file=lap2D_5pt_n100.mtx
|
|
* ./cuSolverSp_LinearSolver -R=chol -file=<file> // cholesky
|
|
factorization
|
|
* ./cuSolverSp_LinearSolver -R=lu -P=symrcm -file=<file> // symrcm + LU
|
|
with partial pivoting
|
|
* ./cuSolverSp_LinearSolver -R=qr -P=symamd -file=<file> // symamd + QR
|
|
factorization
|
|
*
|
|
*
|
|
* Remark: the absolute error on solution x is meaningless without knowing
|
|
condition number of A.
|
|
* The relative error on residual should be close to machine zero,
|
|
i.e. 1.e-15.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include <cuda_runtime.h>
|
|
|
|
#include "cusolverSp.h"
|
|
#include "cusparse.h"
|
|
|
|
#include "helper_cuda.h"
|
|
#include "helper_cusolver.h"
|
|
|
|
template <typename T_ELEM>
|
|
int loadMMSparseMatrix(char *filename, char elem_type, bool csrFormat, int *m,
|
|
int *n, int *nnz, T_ELEM **aVal, int **aRowInd,
|
|
int **aColInd, int extendSymMatrix);
|
|
|
|
void UsageSP(void) {
|
|
printf("<options>\n");
|
|
printf("-h : display this help\n");
|
|
printf("-R=<name> : choose a linear solver\n");
|
|
printf(" chol (cholesky factorization), this is default\n");
|
|
printf(" qr (QR factorization)\n");
|
|
printf(" lu (LU factorization)\n");
|
|
printf("-P=<name> : choose a reordering\n");
|
|
printf(" symrcm (Reverse Cuthill-McKee)\n");
|
|
printf(" symamd (Approximate Minimum Degree)\n");
|
|
printf(" metis (nested dissection)\n");
|
|
printf("-file=<filename> : filename containing a matrix in MM format\n");
|
|
printf("-device=<device_id> : <device_id> if want to run on specific GPU\n");
|
|
|
|
exit(0);
|
|
}
|
|
|
|
void parseCommandLineArguments(int argc, char *argv[], struct testOpts &opts) {
|
|
memset(&opts, 0, sizeof(opts));
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "-h")) {
|
|
UsageSP();
|
|
}
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "R")) {
|
|
char *solverType = NULL;
|
|
getCmdLineArgumentString(argc, (const char **)argv, "R", &solverType);
|
|
|
|
if (solverType) {
|
|
if ((STRCASECMP(solverType, "chol") != 0) &&
|
|
(STRCASECMP(solverType, "lu") != 0) &&
|
|
(STRCASECMP(solverType, "qr") != 0)) {
|
|
printf("\nIncorrect argument passed to -R option\n");
|
|
UsageSP();
|
|
} else {
|
|
opts.testFunc = solverType;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "P")) {
|
|
char *reorderType = NULL;
|
|
getCmdLineArgumentString(argc, (const char **)argv, "P", &reorderType);
|
|
|
|
if (reorderType) {
|
|
if ((STRCASECMP(reorderType, "symrcm") != 0) &&
|
|
(STRCASECMP(reorderType, "symamd") != 0) &&
|
|
(STRCASECMP(reorderType, "metis") != 0)) {
|
|
printf("\nIncorrect argument passed to -P option\n");
|
|
UsageSP();
|
|
} else {
|
|
opts.reorder = reorderType;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "file")) {
|
|
char *fileName = 0;
|
|
getCmdLineArgumentString(argc, (const char **)argv, "file", &fileName);
|
|
|
|
if (fileName) {
|
|
opts.sparse_mat_filename = fileName;
|
|
} else {
|
|
printf("\nIncorrect filename passed to -file \n ");
|
|
UsageSP();
|
|
}
|
|
}
|
|
}
|
|
|
|
int main(int argc, char *argv[]) {
|
|
struct testOpts opts;
|
|
cusolverSpHandle_t handle = NULL;
|
|
cusparseHandle_t cusparseHandle = NULL; /* used in residual evaluation */
|
|
cudaStream_t stream = NULL;
|
|
cusparseMatDescr_t descrA = NULL;
|
|
|
|
int rowsA = 0; /* number of rows of A */
|
|
int colsA = 0; /* number of columns of A */
|
|
int nnzA = 0; /* number of nonzeros of A */
|
|
int baseA = 0; /* base index in CSR format */
|
|
|
|
/* CSR(A) from I/O */
|
|
int *h_csrRowPtrA = NULL;
|
|
int *h_csrColIndA = NULL;
|
|
double *h_csrValA = NULL;
|
|
|
|
double *h_z = NULL; /* z = B \ (Q*b) */
|
|
double *h_x = NULL; /* x = A \ b */
|
|
double *h_b = NULL; /* b = ones(n,1) */
|
|
double *h_Qb = NULL; /* Q*b */
|
|
double *h_r = NULL; /* r = b - A*x */
|
|
|
|
int *h_Q = NULL; /* <int> n */
|
|
/* reorder to reduce zero fill-in */
|
|
/* Q = symrcm(A) or Q = symamd(A) */
|
|
/* B = Q*A*Q' or B = A(Q,Q) by MATLAB notation */
|
|
int *h_csrRowPtrB = NULL; /* <int> n+1 */
|
|
int *h_csrColIndB = NULL; /* <int> nnzA */
|
|
double *h_csrValB = NULL; /* <double> nnzA */
|
|
int *h_mapBfromA = NULL; /* <int> nnzA */
|
|
|
|
size_t size_perm = 0;
|
|
void *buffer_cpu = NULL; /* working space for permutation: B = Q*A*Q^T */
|
|
|
|
/* device copy of A: used in residual evaluation */
|
|
int *d_csrRowPtrA = NULL;
|
|
int *d_csrColIndA = NULL;
|
|
double *d_csrValA = NULL;
|
|
|
|
/* device copy of B: used in B*z = Q*b */
|
|
int *d_csrRowPtrB = NULL;
|
|
int *d_csrColIndB = NULL;
|
|
double *d_csrValB = NULL;
|
|
|
|
int *d_Q = NULL; /* device copy of h_Q */
|
|
double *d_z = NULL; /* z = B \ Q*b */
|
|
double *d_x = NULL; /* x = A \ b */
|
|
double *d_b = NULL; /* a copy of h_b */
|
|
double *d_Qb = NULL; /* a copy of h_Qb */
|
|
double *d_r = NULL; /* r = b - A*x */
|
|
|
|
double tol = 1.e-12;
|
|
const int reorder = 0; /* no reordering */
|
|
int singularity = 0; /* -1 if A is invertible under tol. */
|
|
|
|
/* the constants are used in residual evaluation, r = b - A*x */
|
|
const double minus_one = -1.0;
|
|
const double one = 1.0;
|
|
|
|
double b_inf = 0.0;
|
|
double x_inf = 0.0;
|
|
double r_inf = 0.0;
|
|
double A_inf = 0.0;
|
|
int errors = 0;
|
|
int issym = 0;
|
|
|
|
double start, stop;
|
|
double time_solve_cpu;
|
|
double time_solve_gpu;
|
|
|
|
parseCommandLineArguments(argc, argv, opts);
|
|
|
|
if (NULL == opts.testFunc) {
|
|
opts.testFunc =
|
|
"chol"; /* By default running Cholesky as NO solver selected with -R
|
|
option. */
|
|
}
|
|
|
|
findCudaDevice(argc, (const char **)argv);
|
|
|
|
if (opts.sparse_mat_filename == NULL) {
|
|
opts.sparse_mat_filename = sdkFindFilePath("lap2D_5pt_n100.mtx", argv[0]);
|
|
if (opts.sparse_mat_filename != NULL)
|
|
printf("Using default input file [%s]\n", opts.sparse_mat_filename);
|
|
else
|
|
printf("Could not find lap2D_5pt_n100.mtx\n");
|
|
} else {
|
|
printf("Using input file [%s]\n", opts.sparse_mat_filename);
|
|
}
|
|
|
|
printf("step 1: read matrix market format\n");
|
|
|
|
if (opts.sparse_mat_filename == NULL) {
|
|
fprintf(stderr, "Error: input matrix is not provided\n");
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (loadMMSparseMatrix<double>(opts.sparse_mat_filename, 'd', true, &rowsA,
|
|
&colsA, &nnzA, &h_csrValA, &h_csrRowPtrA,
|
|
&h_csrColIndA, true)) {
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
baseA = h_csrRowPtrA[0]; // baseA = {0,1}
|
|
printf("sparse matrix A is %d x %d with %d nonzeros, base=%d\n", rowsA, colsA,
|
|
nnzA, baseA);
|
|
|
|
if (rowsA != colsA) {
|
|
fprintf(stderr, "Error: only support square matrix\n");
|
|
return 1;
|
|
}
|
|
|
|
checkCudaErrors(cusolverSpCreate(&handle));
|
|
checkCudaErrors(cusparseCreate(&cusparseHandle));
|
|
|
|
checkCudaErrors(cudaStreamCreate(&stream));
|
|
/* bind stream to cusparse and cusolver*/
|
|
checkCudaErrors(cusolverSpSetStream(handle, stream));
|
|
checkCudaErrors(cusparseSetStream(cusparseHandle, stream));
|
|
|
|
/* configure matrix descriptor*/
|
|
checkCudaErrors(cusparseCreateMatDescr(&descrA));
|
|
checkCudaErrors(cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL));
|
|
if (baseA) {
|
|
checkCudaErrors(cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ONE));
|
|
} else {
|
|
checkCudaErrors(cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ZERO));
|
|
}
|
|
|
|
h_z = (double *)malloc(sizeof(double) * colsA);
|
|
h_x = (double *)malloc(sizeof(double) * colsA);
|
|
h_b = (double *)malloc(sizeof(double) * rowsA);
|
|
h_Qb = (double *)malloc(sizeof(double) * rowsA);
|
|
h_r = (double *)malloc(sizeof(double) * rowsA);
|
|
|
|
h_Q = (int *)malloc(sizeof(int) * colsA);
|
|
h_csrRowPtrB = (int *)malloc(sizeof(int) * (rowsA + 1));
|
|
h_csrColIndB = (int *)malloc(sizeof(int) * nnzA);
|
|
h_csrValB = (double *)malloc(sizeof(double) * nnzA);
|
|
h_mapBfromA = (int *)malloc(sizeof(int) * nnzA);
|
|
|
|
assert(NULL != h_z);
|
|
assert(NULL != h_x);
|
|
assert(NULL != h_b);
|
|
assert(NULL != h_Qb);
|
|
assert(NULL != h_r);
|
|
assert(NULL != h_Q);
|
|
assert(NULL != h_csrRowPtrB);
|
|
assert(NULL != h_csrColIndB);
|
|
assert(NULL != h_csrValB);
|
|
assert(NULL != h_mapBfromA);
|
|
|
|
checkCudaErrors(
|
|
cudaMalloc((void **)&d_csrRowPtrA, sizeof(int) * (rowsA + 1)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_csrColIndA, sizeof(int) * nnzA));
|
|
checkCudaErrors(cudaMalloc((void **)&d_csrValA, sizeof(double) * nnzA));
|
|
checkCudaErrors(
|
|
cudaMalloc((void **)&d_csrRowPtrB, sizeof(int) * (rowsA + 1)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_csrColIndB, sizeof(int) * nnzA));
|
|
checkCudaErrors(cudaMalloc((void **)&d_csrValB, sizeof(double) * nnzA));
|
|
checkCudaErrors(cudaMalloc((void **)&d_Q, sizeof(int) * colsA));
|
|
checkCudaErrors(cudaMalloc((void **)&d_z, sizeof(double) * colsA));
|
|
checkCudaErrors(cudaMalloc((void **)&d_x, sizeof(double) * colsA));
|
|
checkCudaErrors(cudaMalloc((void **)&d_b, sizeof(double) * rowsA));
|
|
checkCudaErrors(cudaMalloc((void **)&d_Qb, sizeof(double) * rowsA));
|
|
checkCudaErrors(cudaMalloc((void **)&d_r, sizeof(double) * rowsA));
|
|
|
|
/* verify if A has symmetric pattern or not */
|
|
checkCudaErrors(cusolverSpXcsrissymHost(handle, rowsA, nnzA, descrA,
|
|
h_csrRowPtrA, h_csrRowPtrA + 1,
|
|
h_csrColIndA, &issym));
|
|
|
|
if (0 == strcmp(opts.testFunc, "chol")) {
|
|
if (!issym) {
|
|
printf("Error: A has no symmetric pattern, please use LU or QR \n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
printf("step 2: reorder the matrix A to minimize zero fill-in\n");
|
|
printf(
|
|
" if the user choose a reordering by -P=symrcm, -P=symamd or "
|
|
"-P=metis\n");
|
|
|
|
if (NULL != opts.reorder) {
|
|
if (0 == strcmp(opts.reorder, "symrcm")) {
|
|
printf("step 2.1: Q = symrcm(A) \n");
|
|
checkCudaErrors(cusolverSpXcsrsymrcmHost(
|
|
handle, rowsA, nnzA, descrA, h_csrRowPtrA, h_csrColIndA, h_Q));
|
|
} else if (0 == strcmp(opts.reorder, "symamd")) {
|
|
printf("step 2.1: Q = symamd(A) \n");
|
|
checkCudaErrors(cusolverSpXcsrsymamdHost(
|
|
handle, rowsA, nnzA, descrA, h_csrRowPtrA, h_csrColIndA, h_Q));
|
|
} else if (0 == strcmp(opts.reorder, "metis")) {
|
|
printf("step 2.1: Q = metis(A) \n");
|
|
checkCudaErrors(cusolverSpXcsrmetisndHost(handle, rowsA, nnzA, descrA,
|
|
h_csrRowPtrA, h_csrColIndA,
|
|
NULL, /* default setting. */
|
|
h_Q));
|
|
} else {
|
|
fprintf(stderr, "Error: %s is unknown reordering\n", opts.reorder);
|
|
return 1;
|
|
}
|
|
} else {
|
|
printf("step 2.1: no reordering is chosen, Q = 0:n-1 \n");
|
|
for (int j = 0; j < rowsA; j++) {
|
|
h_Q[j] = j;
|
|
}
|
|
}
|
|
|
|
printf("step 2.2: B = A(Q,Q) \n");
|
|
|
|
memcpy(h_csrRowPtrB, h_csrRowPtrA, sizeof(int) * (rowsA + 1));
|
|
memcpy(h_csrColIndB, h_csrColIndA, sizeof(int) * nnzA);
|
|
|
|
checkCudaErrors(cusolverSpXcsrperm_bufferSizeHost(
|
|
handle, rowsA, colsA, nnzA, descrA, h_csrRowPtrB, h_csrColIndB, h_Q, h_Q,
|
|
&size_perm));
|
|
|
|
if (buffer_cpu) {
|
|
free(buffer_cpu);
|
|
}
|
|
buffer_cpu = (void *)malloc(sizeof(char) * size_perm);
|
|
assert(NULL != buffer_cpu);
|
|
|
|
/* h_mapBfromA = Identity */
|
|
for (int j = 0; j < nnzA; j++) {
|
|
h_mapBfromA[j] = j;
|
|
}
|
|
checkCudaErrors(cusolverSpXcsrpermHost(handle, rowsA, colsA, nnzA, descrA,
|
|
h_csrRowPtrB, h_csrColIndB, h_Q, h_Q,
|
|
h_mapBfromA, buffer_cpu));
|
|
|
|
/* B = A( mapBfromA ) */
|
|
for (int j = 0; j < nnzA; j++) {
|
|
h_csrValB[j] = h_csrValA[h_mapBfromA[j]];
|
|
}
|
|
|
|
printf("step 3: b(j) = 1 + j/n \n");
|
|
for (int row = 0; row < rowsA; row++) {
|
|
h_b[row] = 1.0 + ((double)row) / ((double)rowsA);
|
|
}
|
|
|
|
/* h_Qb = b(Q) */
|
|
for (int row = 0; row < rowsA; row++) {
|
|
h_Qb[row] = h_b[h_Q[row]];
|
|
}
|
|
|
|
printf("step 4: prepare data on device\n");
|
|
checkCudaErrors(cudaMemcpyAsync(d_csrRowPtrA, h_csrRowPtrA,
|
|
sizeof(int) * (rowsA + 1),
|
|
cudaMemcpyHostToDevice, stream));
|
|
checkCudaErrors(cudaMemcpyAsync(d_csrColIndA, h_csrColIndA,
|
|
sizeof(int) * nnzA, cudaMemcpyHostToDevice,
|
|
stream));
|
|
checkCudaErrors(cudaMemcpyAsync(d_csrValA, h_csrValA, sizeof(double) * nnzA,
|
|
cudaMemcpyHostToDevice, stream));
|
|
checkCudaErrors(cudaMemcpyAsync(d_csrRowPtrB, h_csrRowPtrB,
|
|
sizeof(int) * (rowsA + 1),
|
|
cudaMemcpyHostToDevice, stream));
|
|
checkCudaErrors(cudaMemcpyAsync(d_csrColIndB, h_csrColIndB,
|
|
sizeof(int) * nnzA, cudaMemcpyHostToDevice,
|
|
stream));
|
|
checkCudaErrors(cudaMemcpyAsync(d_csrValB, h_csrValB, sizeof(double) * nnzA,
|
|
cudaMemcpyHostToDevice, stream));
|
|
checkCudaErrors(cudaMemcpyAsync(d_b, h_b, sizeof(double) * rowsA,
|
|
cudaMemcpyHostToDevice, stream));
|
|
checkCudaErrors(cudaMemcpyAsync(d_Qb, h_Qb, sizeof(double) * rowsA,
|
|
cudaMemcpyHostToDevice, stream));
|
|
checkCudaErrors(cudaMemcpyAsync(d_Q, h_Q, sizeof(int) * rowsA,
|
|
cudaMemcpyHostToDevice, stream));
|
|
|
|
printf("step 5: solve A*x = b on CPU \n");
|
|
start = second();
|
|
|
|
/* solve B*z = Q*b */
|
|
if (0 == strcmp(opts.testFunc, "chol")) {
|
|
checkCudaErrors(cusolverSpDcsrlsvcholHost(
|
|
handle, rowsA, nnzA, descrA, h_csrValB, h_csrRowPtrB, h_csrColIndB,
|
|
h_Qb, tol, reorder, h_z, &singularity));
|
|
} else if (0 == strcmp(opts.testFunc, "lu")) {
|
|
checkCudaErrors(cusolverSpDcsrlsvluHost(
|
|
handle, rowsA, nnzA, descrA, h_csrValB, h_csrRowPtrB, h_csrColIndB,
|
|
h_Qb, tol, reorder, h_z, &singularity));
|
|
|
|
} else if (0 == strcmp(opts.testFunc, "qr")) {
|
|
checkCudaErrors(cusolverSpDcsrlsvqrHost(
|
|
handle, rowsA, nnzA, descrA, h_csrValB, h_csrRowPtrB, h_csrColIndB,
|
|
h_Qb, tol, reorder, h_z, &singularity));
|
|
} else {
|
|
fprintf(stderr, "Error: %s is unknown function\n", opts.testFunc);
|
|
return 1;
|
|
}
|
|
|
|
/* Q*x = z */
|
|
for (int row = 0; row < rowsA; row++) {
|
|
h_x[h_Q[row]] = h_z[row];
|
|
}
|
|
|
|
if (0 <= singularity) {
|
|
printf("WARNING: the matrix is singular at row %d under tol (%E)\n",
|
|
singularity, tol);
|
|
}
|
|
|
|
stop = second();
|
|
time_solve_cpu = stop - start;
|
|
|
|
printf("step 6: evaluate residual r = b - A*x (result on CPU)\n");
|
|
checkCudaErrors(cudaMemcpyAsync(d_r, d_b, sizeof(double) * rowsA,
|
|
cudaMemcpyDeviceToDevice, stream));
|
|
checkCudaErrors(cudaMemcpyAsync(d_x, h_x, sizeof(double) * colsA,
|
|
cudaMemcpyHostToDevice, stream));
|
|
|
|
/* Wrap raw data into cuSPARSE generic API objects */
|
|
cusparseSpMatDescr_t matA = NULL;
|
|
if (baseA) {
|
|
checkCudaErrors(cusparseCreateCsr(&matA, rowsA, colsA, nnzA, d_csrRowPtrA,
|
|
d_csrColIndA, d_csrValA,
|
|
CUSPARSE_INDEX_32I, CUSPARSE_INDEX_32I,
|
|
CUSPARSE_INDEX_BASE_ONE, CUDA_R_64F));
|
|
} else {
|
|
checkCudaErrors(cusparseCreateCsr(&matA, rowsA, colsA, nnzA, d_csrRowPtrA,
|
|
d_csrColIndA, d_csrValA,
|
|
CUSPARSE_INDEX_32I, CUSPARSE_INDEX_32I,
|
|
CUSPARSE_INDEX_BASE_ZERO, CUDA_R_64F));
|
|
}
|
|
|
|
cusparseDnVecDescr_t vecx = NULL;
|
|
checkCudaErrors(cusparseCreateDnVec(&vecx, colsA, d_x, CUDA_R_64F));
|
|
cusparseDnVecDescr_t vecAx = NULL;
|
|
checkCudaErrors(cusparseCreateDnVec(&vecAx, rowsA, d_r, CUDA_R_64F));
|
|
|
|
/* Allocate workspace for cuSPARSE */
|
|
size_t bufferSize = 0;
|
|
checkCudaErrors(cusparseSpMV_bufferSize(
|
|
cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, &minus_one, matA, vecx,
|
|
&one, vecAx, CUDA_R_64F, CUSPARSE_MV_ALG_DEFAULT, &bufferSize));
|
|
void *buffer = NULL;
|
|
checkCudaErrors(cudaMalloc(&buffer, bufferSize));
|
|
|
|
checkCudaErrors(cusparseSpMV(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE,
|
|
&minus_one, matA, vecx, &one, vecAx, CUDA_R_64F,
|
|
CUSPARSE_MV_ALG_DEFAULT, &buffer));
|
|
|
|
checkCudaErrors(cudaMemcpyAsync(h_r, d_r, sizeof(double) * rowsA,
|
|
cudaMemcpyDeviceToHost, stream));
|
|
/* wait until h_r is ready */
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
|
|
b_inf = vec_norminf(rowsA, h_b);
|
|
x_inf = vec_norminf(colsA, h_x);
|
|
r_inf = vec_norminf(rowsA, h_r);
|
|
A_inf = csr_mat_norminf(rowsA, colsA, nnzA, descrA, h_csrValA, h_csrRowPtrA,
|
|
h_csrColIndA);
|
|
|
|
printf("(CPU) |b - A*x| = %E \n", r_inf);
|
|
printf("(CPU) |A| = %E \n", A_inf);
|
|
printf("(CPU) |x| = %E \n", x_inf);
|
|
printf("(CPU) |b| = %E \n", b_inf);
|
|
printf("(CPU) |b - A*x|/(|A|*|x| + |b|) = %E \n",
|
|
r_inf / (A_inf * x_inf + b_inf));
|
|
|
|
printf("step 7: solve A*x = b on GPU\n");
|
|
start = second();
|
|
|
|
/* solve B*z = Q*b */
|
|
if (0 == strcmp(opts.testFunc, "chol")) {
|
|
checkCudaErrors(cusolverSpDcsrlsvchol(
|
|
handle, rowsA, nnzA, descrA, d_csrValB, d_csrRowPtrB, d_csrColIndB,
|
|
d_Qb, tol, reorder, d_z, &singularity));
|
|
|
|
} else if (0 == strcmp(opts.testFunc, "lu")) {
|
|
printf("WARNING: no LU available on GPU \n");
|
|
} else if (0 == strcmp(opts.testFunc, "qr")) {
|
|
checkCudaErrors(cusolverSpDcsrlsvqr(handle, rowsA, nnzA, descrA, d_csrValB,
|
|
d_csrRowPtrB, d_csrColIndB, d_Qb, tol,
|
|
reorder, d_z, &singularity));
|
|
} else {
|
|
fprintf(stderr, "Error: %s is unknow function\n", opts.testFunc);
|
|
return 1;
|
|
}
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
if (0 <= singularity) {
|
|
printf("WARNING: the matrix is singular at row %d under tol (%E)\n",
|
|
singularity, tol);
|
|
}
|
|
/* Q*x = z */
|
|
checkCudaErrors(cusparseDsctr(cusparseHandle, rowsA, d_z, d_Q, d_x,
|
|
CUSPARSE_INDEX_BASE_ZERO));
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
|
|
stop = second();
|
|
time_solve_gpu = stop - start;
|
|
|
|
printf("step 8: evaluate residual r = b - A*x (result on GPU)\n");
|
|
checkCudaErrors(cudaMemcpyAsync(d_r, d_b, sizeof(double) * rowsA,
|
|
cudaMemcpyDeviceToDevice, stream));
|
|
|
|
checkCudaErrors(cusparseSpMV(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE,
|
|
&minus_one, matA, vecx, &one, vecAx, CUDA_R_64F,
|
|
CUSPARSE_MV_ALG_DEFAULT, &buffer));
|
|
|
|
checkCudaErrors(cudaMemcpyAsync(h_x, d_x, sizeof(double) * colsA,
|
|
cudaMemcpyDeviceToHost, stream));
|
|
checkCudaErrors(cudaMemcpyAsync(h_r, d_r, sizeof(double) * rowsA,
|
|
cudaMemcpyDeviceToHost, stream));
|
|
/* wait until h_x and h_r are ready */
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
|
|
b_inf = vec_norminf(rowsA, h_b);
|
|
x_inf = vec_norminf(colsA, h_x);
|
|
r_inf = vec_norminf(rowsA, h_r);
|
|
|
|
if (0 != strcmp(opts.testFunc, "lu")) {
|
|
// only cholesky and qr have GPU version
|
|
printf("(GPU) |b - A*x| = %E \n", r_inf);
|
|
printf("(GPU) |A| = %E \n", A_inf);
|
|
printf("(GPU) |x| = %E \n", x_inf);
|
|
printf("(GPU) |b| = %E \n", b_inf);
|
|
printf("(GPU) |b - A*x|/(|A|*|x| + |b|) = %E \n",
|
|
r_inf / (A_inf * x_inf + b_inf));
|
|
}
|
|
|
|
fprintf(stdout, "timing %s: CPU = %10.6f sec , GPU = %10.6f sec\n",
|
|
opts.testFunc, time_solve_cpu, time_solve_gpu);
|
|
|
|
if (0 != strcmp(opts.testFunc, "lu")) {
|
|
printf("show last 10 elements of solution vector (GPU) \n");
|
|
printf("consistent result for different reordering and solver \n");
|
|
for (int j = rowsA - 10; j < rowsA; j++) {
|
|
printf("x[%d] = %E\n", j, h_x[j]);
|
|
}
|
|
}
|
|
|
|
if (handle) {
|
|
checkCudaErrors(cusolverSpDestroy(handle));
|
|
}
|
|
if (cusparseHandle) {
|
|
checkCudaErrors(cusparseDestroy(cusparseHandle));
|
|
}
|
|
if (stream) {
|
|
checkCudaErrors(cudaStreamDestroy(stream));
|
|
}
|
|
if (descrA) {
|
|
checkCudaErrors(cusparseDestroyMatDescr(descrA));
|
|
}
|
|
if (matA) {
|
|
checkCudaErrors(cusparseDestroySpMat(matA));
|
|
}
|
|
if (vecx) {
|
|
checkCudaErrors(cusparseDestroyDnVec(vecx));
|
|
}
|
|
if (vecAx) {
|
|
checkCudaErrors(cusparseDestroyDnVec(vecAx));
|
|
}
|
|
|
|
if (h_csrValA) {
|
|
free(h_csrValA);
|
|
}
|
|
if (h_csrRowPtrA) {
|
|
free(h_csrRowPtrA);
|
|
}
|
|
if (h_csrColIndA) {
|
|
free(h_csrColIndA);
|
|
}
|
|
if (h_z) {
|
|
free(h_z);
|
|
}
|
|
if (h_x) {
|
|
free(h_x);
|
|
}
|
|
if (h_b) {
|
|
free(h_b);
|
|
}
|
|
if (h_Qb) {
|
|
free(h_Qb);
|
|
}
|
|
if (h_r) {
|
|
free(h_r);
|
|
}
|
|
|
|
if (h_Q) {
|
|
free(h_Q);
|
|
}
|
|
|
|
if (h_csrRowPtrB) {
|
|
free(h_csrRowPtrB);
|
|
}
|
|
if (h_csrColIndB) {
|
|
free(h_csrColIndB);
|
|
}
|
|
if (h_csrValB) {
|
|
free(h_csrValB);
|
|
}
|
|
if (h_mapBfromA) {
|
|
free(h_mapBfromA);
|
|
}
|
|
|
|
if (buffer_cpu) {
|
|
free(buffer_cpu);
|
|
}
|
|
|
|
if (d_csrValA) {
|
|
checkCudaErrors(cudaFree(d_csrValA));
|
|
}
|
|
if (d_csrRowPtrA) {
|
|
checkCudaErrors(cudaFree(d_csrRowPtrA));
|
|
}
|
|
if (d_csrColIndA) {
|
|
checkCudaErrors(cudaFree(d_csrColIndA));
|
|
}
|
|
if (d_csrValB) {
|
|
checkCudaErrors(cudaFree(d_csrValB));
|
|
}
|
|
if (d_csrRowPtrB) {
|
|
checkCudaErrors(cudaFree(d_csrRowPtrB));
|
|
}
|
|
if (d_csrColIndB) {
|
|
checkCudaErrors(cudaFree(d_csrColIndB));
|
|
}
|
|
if (d_Q) {
|
|
checkCudaErrors(cudaFree(d_Q));
|
|
}
|
|
if (d_z) {
|
|
checkCudaErrors(cudaFree(d_z));
|
|
}
|
|
if (d_x) {
|
|
checkCudaErrors(cudaFree(d_x));
|
|
}
|
|
if (d_b) {
|
|
checkCudaErrors(cudaFree(d_b));
|
|
}
|
|
if (d_Qb) {
|
|
checkCudaErrors(cudaFree(d_Qb));
|
|
}
|
|
if (d_r) {
|
|
checkCudaErrors(cudaFree(d_r));
|
|
}
|
|
|
|
return 0;
|
|
}
|