mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-20 03:45:54 +08:00
87 lines
3.9 KiB
C++
87 lines
3.9 KiB
C++
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <math.h>
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Polynomial approximation of cumulative normal distribution function
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
static double CND(double d) {
|
|
const double A1 = 0.31938153;
|
|
const double A2 = -0.356563782;
|
|
const double A3 = 1.781477937;
|
|
const double A4 = -1.821255978;
|
|
const double A5 = 1.330274429;
|
|
const double RSQRT2PI = 0.39894228040143267793994605993438;
|
|
|
|
double K = 1.0 / (1.0 + 0.2316419 * fabs(d));
|
|
|
|
double cnd = RSQRT2PI * exp(-0.5 * d * d) *
|
|
(K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5)))));
|
|
|
|
if (d > 0) cnd = 1.0 - cnd;
|
|
|
|
return cnd;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Black-Scholes formula for both call and put
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
static void BlackScholesBodyCPU(float &callResult, float &putResult,
|
|
float Sf, // Stock price
|
|
float Xf, // Option strike
|
|
float Tf, // Option years
|
|
float Rf, // Riskless rate
|
|
float Vf // Volatility rate
|
|
) {
|
|
double S = Sf, X = Xf, T = Tf, R = Rf, V = Vf;
|
|
|
|
double sqrtT = sqrt(T);
|
|
double d1 = (log(S / X) + (R + 0.5 * V * V) * T) / (V * sqrtT);
|
|
double d2 = d1 - V * sqrtT;
|
|
double CNDD1 = CND(d1);
|
|
double CNDD2 = CND(d2);
|
|
|
|
// Calculate Call and Put simultaneously
|
|
double expRT = exp(-R * T);
|
|
callResult = (float)(S * CNDD1 - X * expRT * CNDD2);
|
|
putResult = (float)(X * expRT * (1.0 - CNDD2) - S * (1.0 - CNDD1));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Process an array of optN options
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
extern "C" void BlackScholesCPU(float *h_CallResult, float *h_PutResult,
|
|
float *h_StockPrice, float *h_OptionStrike,
|
|
float *h_OptionYears, float Riskfree,
|
|
float Volatility, int optN) {
|
|
for (int opt = 0; opt < optN; opt++)
|
|
BlackScholesBodyCPU(h_CallResult[opt], h_PutResult[opt], h_StockPrice[opt],
|
|
h_OptionStrike[opt], h_OptionYears[opt], Riskfree,
|
|
Volatility);
|
|
}
|