mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-20 03:45:54 +08:00
244 lines
9.1 KiB
Plaintext
244 lines
9.1 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* This sample evaluates fair call and put prices for a
|
|
* given set of European options by Black-Scholes formula.
|
|
* See supplied whitepaper for more explanations.
|
|
*/
|
|
|
|
#include <helper_functions.h> // helper functions for string parsing
|
|
#include <helper_cuda.h> // helper functions CUDA error checking and initialization
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Process an array of optN options on CPU
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
extern "C" void BlackScholesCPU(float *h_CallResult, float *h_PutResult,
|
|
float *h_StockPrice, float *h_OptionStrike,
|
|
float *h_OptionYears, float Riskfree,
|
|
float Volatility, int optN);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Process an array of OptN options on GPU
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
#include "BlackScholes_kernel.cuh"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Helper function, returning uniformly distributed
|
|
// random float in [low, high] range
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
float RandFloat(float low, float high) {
|
|
float t = (float)rand() / (float)RAND_MAX;
|
|
return (1.0f - t) * low + t * high;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Data configuration
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
const int OPT_N = 4000000;
|
|
const int NUM_ITERATIONS = 512;
|
|
|
|
const int OPT_SZ = OPT_N * sizeof(float);
|
|
const float RISKFREE = 0.02f;
|
|
const float VOLATILITY = 0.30f;
|
|
|
|
#define DIV_UP(a, b) (((a) + (b)-1) / (b))
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Main program
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
int main(int argc, char **argv) {
|
|
// Start logs
|
|
printf("[%s] - Starting...\n", argv[0]);
|
|
|
|
//'h_' prefix - CPU (host) memory space
|
|
float
|
|
// Results calculated by CPU for reference
|
|
*h_CallResultCPU,
|
|
*h_PutResultCPU,
|
|
// CPU copy of GPU results
|
|
*h_CallResultGPU, *h_PutResultGPU,
|
|
// CPU instance of input data
|
|
*h_StockPrice, *h_OptionStrike, *h_OptionYears;
|
|
|
|
//'d_' prefix - GPU (device) memory space
|
|
float
|
|
// Results calculated by GPU
|
|
*d_CallResult,
|
|
*d_PutResult,
|
|
// GPU instance of input data
|
|
*d_StockPrice, *d_OptionStrike, *d_OptionYears;
|
|
|
|
double delta, ref, sum_delta, sum_ref, max_delta, L1norm, gpuTime;
|
|
|
|
StopWatchInterface *hTimer = NULL;
|
|
int i;
|
|
|
|
findCudaDevice(argc, (const char **)argv);
|
|
|
|
sdkCreateTimer(&hTimer);
|
|
|
|
printf("Initializing data...\n");
|
|
printf("...allocating CPU memory for options.\n");
|
|
h_CallResultCPU = (float *)malloc(OPT_SZ);
|
|
h_PutResultCPU = (float *)malloc(OPT_SZ);
|
|
h_CallResultGPU = (float *)malloc(OPT_SZ);
|
|
h_PutResultGPU = (float *)malloc(OPT_SZ);
|
|
h_StockPrice = (float *)malloc(OPT_SZ);
|
|
h_OptionStrike = (float *)malloc(OPT_SZ);
|
|
h_OptionYears = (float *)malloc(OPT_SZ);
|
|
|
|
printf("...allocating GPU memory for options.\n");
|
|
checkCudaErrors(cudaMalloc((void **)&d_CallResult, OPT_SZ));
|
|
checkCudaErrors(cudaMalloc((void **)&d_PutResult, OPT_SZ));
|
|
checkCudaErrors(cudaMalloc((void **)&d_StockPrice, OPT_SZ));
|
|
checkCudaErrors(cudaMalloc((void **)&d_OptionStrike, OPT_SZ));
|
|
checkCudaErrors(cudaMalloc((void **)&d_OptionYears, OPT_SZ));
|
|
|
|
printf("...generating input data in CPU mem.\n");
|
|
srand(5347);
|
|
|
|
// Generate options set
|
|
for (i = 0; i < OPT_N; i++) {
|
|
h_CallResultCPU[i] = 0.0f;
|
|
h_PutResultCPU[i] = -1.0f;
|
|
h_StockPrice[i] = RandFloat(5.0f, 30.0f);
|
|
h_OptionStrike[i] = RandFloat(1.0f, 100.0f);
|
|
h_OptionYears[i] = RandFloat(0.25f, 10.0f);
|
|
}
|
|
|
|
printf("...copying input data to GPU mem.\n");
|
|
// Copy options data to GPU memory for further processing
|
|
checkCudaErrors(
|
|
cudaMemcpy(d_StockPrice, h_StockPrice, OPT_SZ, cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemcpy(d_OptionStrike, h_OptionStrike, OPT_SZ,
|
|
cudaMemcpyHostToDevice));
|
|
checkCudaErrors(
|
|
cudaMemcpy(d_OptionYears, h_OptionYears, OPT_SZ, cudaMemcpyHostToDevice));
|
|
printf("Data init done.\n\n");
|
|
|
|
printf("Executing Black-Scholes GPU kernel (%i iterations)...\n",
|
|
NUM_ITERATIONS);
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
sdkResetTimer(&hTimer);
|
|
sdkStartTimer(&hTimer);
|
|
|
|
for (i = 0; i < NUM_ITERATIONS; i++) {
|
|
BlackScholesGPU<<<DIV_UP((OPT_N / 2), 128), 128 /*480, 128*/>>>(
|
|
(float2 *)d_CallResult, (float2 *)d_PutResult, (float2 *)d_StockPrice,
|
|
(float2 *)d_OptionStrike, (float2 *)d_OptionYears, RISKFREE, VOLATILITY,
|
|
OPT_N);
|
|
getLastCudaError("BlackScholesGPU() execution failed\n");
|
|
}
|
|
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
sdkStopTimer(&hTimer);
|
|
gpuTime = sdkGetTimerValue(&hTimer) / NUM_ITERATIONS;
|
|
|
|
// Both call and put is calculated
|
|
printf("Options count : %i \n", 2 * OPT_N);
|
|
printf("BlackScholesGPU() time : %f msec\n", gpuTime);
|
|
printf("Effective memory bandwidth: %f GB/s\n",
|
|
((double)(5 * OPT_N * sizeof(float)) * 1E-9) / (gpuTime * 1E-3));
|
|
printf("Gigaoptions per second : %f \n\n",
|
|
((double)(2 * OPT_N) * 1E-9) / (gpuTime * 1E-3));
|
|
|
|
printf(
|
|
"BlackScholes, Throughput = %.4f GOptions/s, Time = %.5f s, Size = %u "
|
|
"options, NumDevsUsed = %u, Workgroup = %u\n",
|
|
(((double)(2.0 * OPT_N) * 1.0E-9) / (gpuTime * 1.0E-3)), gpuTime * 1e-3,
|
|
(2 * OPT_N), 1, 128);
|
|
|
|
printf("\nReading back GPU results...\n");
|
|
// Read back GPU results to compare them to CPU results
|
|
checkCudaErrors(cudaMemcpy(h_CallResultGPU, d_CallResult, OPT_SZ,
|
|
cudaMemcpyDeviceToHost));
|
|
checkCudaErrors(
|
|
cudaMemcpy(h_PutResultGPU, d_PutResult, OPT_SZ, cudaMemcpyDeviceToHost));
|
|
|
|
printf("Checking the results...\n");
|
|
printf("...running CPU calculations.\n\n");
|
|
// Calculate options values on CPU
|
|
BlackScholesCPU(h_CallResultCPU, h_PutResultCPU, h_StockPrice, h_OptionStrike,
|
|
h_OptionYears, RISKFREE, VOLATILITY, OPT_N);
|
|
|
|
printf("Comparing the results...\n");
|
|
// Calculate max absolute difference and L1 distance
|
|
// between CPU and GPU results
|
|
sum_delta = 0;
|
|
sum_ref = 0;
|
|
max_delta = 0;
|
|
|
|
for (i = 0; i < OPT_N; i++) {
|
|
ref = h_CallResultCPU[i];
|
|
delta = fabs(h_CallResultCPU[i] - h_CallResultGPU[i]);
|
|
|
|
if (delta > max_delta) {
|
|
max_delta = delta;
|
|
}
|
|
|
|
sum_delta += delta;
|
|
sum_ref += fabs(ref);
|
|
}
|
|
|
|
L1norm = sum_delta / sum_ref;
|
|
printf("L1 norm: %E\n", L1norm);
|
|
printf("Max absolute error: %E\n\n", max_delta);
|
|
|
|
printf("Shutting down...\n");
|
|
printf("...releasing GPU memory.\n");
|
|
checkCudaErrors(cudaFree(d_OptionYears));
|
|
checkCudaErrors(cudaFree(d_OptionStrike));
|
|
checkCudaErrors(cudaFree(d_StockPrice));
|
|
checkCudaErrors(cudaFree(d_PutResult));
|
|
checkCudaErrors(cudaFree(d_CallResult));
|
|
|
|
printf("...releasing CPU memory.\n");
|
|
free(h_OptionYears);
|
|
free(h_OptionStrike);
|
|
free(h_StockPrice);
|
|
free(h_PutResultGPU);
|
|
free(h_CallResultGPU);
|
|
free(h_PutResultCPU);
|
|
free(h_CallResultCPU);
|
|
sdkDeleteTimer(&hTimer);
|
|
printf("Shutdown done.\n");
|
|
|
|
printf("\n[BlackScholes] - Test Summary\n");
|
|
|
|
if (L1norm > 1e-6) {
|
|
printf("Test failed!\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
printf(
|
|
"\nNOTE: The CUDA Samples are not meant for performance measurements. "
|
|
"Results may vary when GPU Boost is enabled.\n\n");
|
|
printf("Test passed\n");
|
|
exit(EXIT_SUCCESS);
|
|
}
|