mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-20 03:45:54 +08:00
441 lines
16 KiB
Plaintext
441 lines
16 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
||
*
|
||
* Redistribution and use in source and binary forms, with or without
|
||
* modification, are permitted provided that the following conditions
|
||
* are met:
|
||
* * Redistributions of source code must retain the above copyright
|
||
* notice, this list of conditions and the following disclaimer.
|
||
* * Redistributions in binary form must reproduce the above copyright
|
||
* notice, this list of conditions and the following disclaimer in the
|
||
* documentation and/or other materials provided with the distribution.
|
||
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
||
* contributors may be used to endorse or promote products derived
|
||
* from this software without specific prior written permission.
|
||
*
|
||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
*/
|
||
|
||
/*
|
||
* This sample demonstrates Inter Process Communication
|
||
* using one process per GPU for computation.
|
||
*/
|
||
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <vector>
|
||
#include <cuda.h>
|
||
#define CUDA_DRIVER_API 1
|
||
#include "helper_cuda.h"
|
||
#include "helper_cuda_drvapi.h"
|
||
#include "helper_multiprocess.h"
|
||
|
||
static const char shmName[] = "streamOrderedAllocationIPCshm";
|
||
static const char ipcName[] = "streamOrderedAllocationIPC_pipe";
|
||
// For direct NVLINK and PCI-E peers, at max 8 simultaneous peers are allowed
|
||
// For NVSWITCH connected peers like DGX-2, simultaneous peers are not limited
|
||
// in the same way.
|
||
#define MAX_DEVICES (32)
|
||
#define DATA_SIZE (64ULL << 20ULL) // 64MB
|
||
|
||
#if defined(__linux__)
|
||
#define cpu_atomic_add32(a, x) __sync_add_and_fetch(a, x)
|
||
#elif defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
|
||
#define cpu_atomic_add32(a, x) InterlockedAdd((volatile LONG *)a, x)
|
||
#else
|
||
#error Unsupported system
|
||
#endif
|
||
|
||
typedef struct shmStruct_st {
|
||
size_t nprocesses;
|
||
int barrier;
|
||
int sense;
|
||
int devices[MAX_DEVICES];
|
||
cudaMemPoolPtrExportData exportPtrData[MAX_DEVICES];
|
||
} shmStruct;
|
||
|
||
__global__ void simpleKernel(char *ptr, int sz, char val) {
|
||
int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||
for (; idx < sz; idx += (gridDim.x * blockDim.x)) {
|
||
ptr[idx] = val;
|
||
}
|
||
}
|
||
|
||
static void barrierWait(volatile int *barrier, volatile int *sense,
|
||
unsigned int n) {
|
||
int count;
|
||
|
||
// Check-in
|
||
count = cpu_atomic_add32(barrier, 1);
|
||
if (count == n) // Last one in
|
||
*sense = 1;
|
||
while (!*sense)
|
||
;
|
||
|
||
// Check-out
|
||
count = cpu_atomic_add32(barrier, -1);
|
||
if (count == 0) // Last one out
|
||
*sense = 0;
|
||
while (*sense)
|
||
;
|
||
}
|
||
|
||
static void childProcess(int id) {
|
||
volatile shmStruct *shm = NULL;
|
||
cudaStream_t stream;
|
||
sharedMemoryInfo info;
|
||
size_t procCount, i;
|
||
int blocks = 0;
|
||
int threads = 128;
|
||
cudaDeviceProp prop;
|
||
std::vector<void *> ptrs;
|
||
|
||
std::vector<char> verification_buffer(DATA_SIZE);
|
||
|
||
ipcHandle *ipcChildHandle = NULL;
|
||
checkIpcErrors(ipcOpenSocket(ipcChildHandle));
|
||
|
||
if (sharedMemoryOpen(shmName, sizeof(shmStruct), &info) != 0) {
|
||
printf("Failed to create shared memory slab\n");
|
||
exit(EXIT_FAILURE);
|
||
}
|
||
shm = (volatile shmStruct *)info.addr;
|
||
procCount = shm->nprocesses;
|
||
|
||
barrierWait(&shm->barrier, &shm->sense, (unsigned int)(procCount + 1));
|
||
|
||
// Receive all allocation handles shared by Parent.
|
||
std::vector<ShareableHandle> shHandle(shm->nprocesses);
|
||
checkIpcErrors(ipcRecvShareableHandles(ipcChildHandle, shHandle));
|
||
|
||
checkCudaErrors(cudaSetDevice(shm->devices[id]));
|
||
checkCudaErrors(cudaGetDeviceProperties(&prop, shm->devices[id]));
|
||
checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
|
||
checkCudaErrors(cudaOccupancyMaxActiveBlocksPerMultiprocessor(
|
||
&blocks, simpleKernel, threads, 0));
|
||
blocks *= prop.multiProcessorCount;
|
||
|
||
std::vector<cudaMemPool_t> pools(shm->nprocesses);
|
||
|
||
cudaMemAllocationHandleType handleType = cudaMemHandleTypePosixFileDescriptor;
|
||
|
||
// Import mem pools from all the devices created in the master
|
||
// process using shareable handles received via socket
|
||
// and import the pointer to the allocated buffer using
|
||
// exportData filled in shared memory by the master process.
|
||
for (i = 0; i < procCount; i++) {
|
||
checkCudaErrors(cudaMemPoolImportFromShareableHandle(
|
||
&pools[i], (void *)shHandle[i], handleType, 0));
|
||
|
||
cudaMemAccessFlags accessFlags;
|
||
cudaMemLocation location;
|
||
location.type = cudaMemLocationTypeDevice;
|
||
location.id = shm->devices[id];
|
||
checkCudaErrors(cudaMemPoolGetAccess(&accessFlags, pools[i], &location));
|
||
if (accessFlags != cudaMemAccessFlagsProtReadWrite) {
|
||
cudaMemAccessDesc desc;
|
||
memset(&desc, 0, sizeof(cudaMemAccessDesc));
|
||
desc.location.type = cudaMemLocationTypeDevice;
|
||
desc.location.id = shm->devices[id];
|
||
desc.flags = cudaMemAccessFlagsProtReadWrite;
|
||
checkCudaErrors(cudaMemPoolSetAccess(pools[i], &desc, 1));
|
||
}
|
||
|
||
// Import the allocation from each memory pool by iterating over exportData
|
||
// until import is success.
|
||
for (int j = 0; j < procCount; j++) {
|
||
void *ptr = NULL;
|
||
// Import the allocation using the opaque export data retrieved through
|
||
// the shared memory".
|
||
cudaError_t ret = cudaMemPoolImportPointer(
|
||
&ptr, pools[i], (cudaMemPoolPtrExportData *)&shm->exportPtrData[j]);
|
||
|
||
if (ret == cudaSuccess) {
|
||
// Pointer import is successful hence add it to the ptrs bag.
|
||
ptrs.push_back(ptr);
|
||
break;
|
||
} else {
|
||
// Reset failure error received from cudaMemPoolImportPointer
|
||
// for further try.
|
||
cudaGetLastError();
|
||
}
|
||
}
|
||
// Since we have imported allocations shared by the parent with us, we can
|
||
// close this ShareableHandle.
|
||
checkIpcErrors(ipcCloseShareableHandle(shHandle[i]));
|
||
}
|
||
|
||
// Since we have imported allocations shared by the parent with us, we can
|
||
// close the socket.
|
||
checkIpcErrors(ipcCloseSocket(ipcChildHandle));
|
||
|
||
// At each iteration of the loop, each sibling process will push work on
|
||
// their respective devices accessing the next peer mapped buffer allocated
|
||
// by the master process (these can come from other sibling processes as
|
||
// well). To coordinate each process' access, we force the stream to wait for
|
||
// the work already accessing this buffer.
|
||
for (i = 0; i < procCount; i++) {
|
||
size_t bufferId = (i + id) % procCount;
|
||
|
||
// Push a simple kernel on it
|
||
simpleKernel<<<blocks, threads, 0, stream>>>((char *)ptrs[bufferId],
|
||
DATA_SIZE, id);
|
||
checkCudaErrors(cudaGetLastError());
|
||
checkCudaErrors(cudaStreamSynchronize(stream));
|
||
|
||
// Wait for all my sibling processes to push this stage of their work
|
||
// before proceeding to the next. This prevents siblings from racing
|
||
// ahead and clobbering the recorded event or waiting on the wrong
|
||
// recorded event.
|
||
barrierWait(&shm->barrier, &shm->sense, (unsigned int)procCount);
|
||
if (id == 0) {
|
||
printf("Step %lld done\n", (unsigned long long)i);
|
||
}
|
||
}
|
||
|
||
// Now wait for my buffer to be ready so I can copy it locally and verify it
|
||
checkCudaErrors(cudaMemcpyAsync(&verification_buffer[0], ptrs[id], DATA_SIZE,
|
||
cudaMemcpyDeviceToHost, stream));
|
||
|
||
// And wait for all the queued up work to complete
|
||
checkCudaErrors(cudaStreamSynchronize(stream));
|
||
|
||
printf("Process %d: verifying...\n", id);
|
||
|
||
// The contents should have the id of the sibling just after me
|
||
char compareId = (char)((id + 1) % procCount);
|
||
for (unsigned long long j = 0; j < DATA_SIZE; j++) {
|
||
if (verification_buffer[j] != compareId) {
|
||
printf("Process %d: Verification mismatch at %lld: %d != %d\n", id, j,
|
||
(int)verification_buffer[j], (int)compareId);
|
||
}
|
||
}
|
||
|
||
// Clean up!
|
||
for (i = 0; i < procCount; i++) {
|
||
// Free the memory before the exporter process frees it
|
||
checkCudaErrors(cudaFreeAsync(ptrs[i], stream));
|
||
}
|
||
|
||
// And wait for all the queued up work to complete
|
||
checkCudaErrors(cudaStreamSynchronize(stream));
|
||
checkCudaErrors(cudaStreamDestroy(stream));
|
||
|
||
printf("Process %d complete!\n", id);
|
||
}
|
||
|
||
static void parentProcess(char *app) {
|
||
sharedMemoryInfo info;
|
||
int devCount, i;
|
||
volatile shmStruct *shm = NULL;
|
||
std::vector<void *> ptrs;
|
||
std::vector<Process> processes;
|
||
|
||
checkCudaErrors(cudaGetDeviceCount(&devCount));
|
||
std::vector<CUdevice> devices(devCount);
|
||
for (i = 0; i < devCount; i++) {
|
||
cuDeviceGet(&devices[i], i);
|
||
}
|
||
|
||
if (sharedMemoryCreate(shmName, sizeof(*shm), &info) != 0) {
|
||
printf("Failed to create shared memory slab\n");
|
||
exit(EXIT_FAILURE);
|
||
}
|
||
shm = (volatile shmStruct *)info.addr;
|
||
memset((void *)shm, 0, sizeof(*shm));
|
||
|
||
// Pick all the devices that can access each other's memory for this test
|
||
// Keep in mind that CUDA has minimal support for fork() without a
|
||
// corresponding exec() in the child process, but in this case our
|
||
// spawnProcess will always exec, so no need to worry.
|
||
for (i = 0; i < devCount; i++) {
|
||
bool allPeers = true;
|
||
cudaDeviceProp prop;
|
||
checkCudaErrors(cudaGetDeviceProperties(&prop, i));
|
||
|
||
int isMemPoolSupported = 0;
|
||
checkCudaErrors(cudaDeviceGetAttribute(&isMemPoolSupported,
|
||
cudaDevAttrMemoryPoolsSupported, i));
|
||
// CUDA IPC is only supported on devices with unified addressing
|
||
if (!isMemPoolSupported) {
|
||
printf("Device %d does not support cuda memory pools, skipping...\n", i);
|
||
continue;
|
||
}
|
||
int deviceSupportsIpcHandle = 0;
|
||
#if defined(__linux__)
|
||
checkCudaErrors(cuDeviceGetAttribute(
|
||
&deviceSupportsIpcHandle,
|
||
CU_DEVICE_ATTRIBUTE_HANDLE_TYPE_POSIX_FILE_DESCRIPTOR_SUPPORTED,
|
||
devices[i]));
|
||
#else
|
||
cuDeviceGetAttribute(&deviceSupportsIpcHandle,
|
||
CU_DEVICE_ATTRIBUTE_HANDLE_TYPE_WIN32_HANDLE_SUPPORTED,
|
||
devices[i]);
|
||
#endif
|
||
|
||
if (!deviceSupportsIpcHandle) {
|
||
printf("Device %d does not support CUDA IPC Handle, skipping...\n", i);
|
||
continue;
|
||
}
|
||
// This sample requires two processes accessing each device, so we need
|
||
// to ensure exclusive or prohibited mode is not set
|
||
if (prop.computeMode != cudaComputeModeDefault) {
|
||
printf("Device %d is in an unsupported compute mode for this sample\n",
|
||
i);
|
||
continue;
|
||
}
|
||
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
|
||
// CUDA IPC on Windows is only supported on TCC
|
||
if (!prop.tccDriver) {
|
||
printf("Device %d is not in TCC mode\n", i);
|
||
continue;
|
||
}
|
||
#endif
|
||
|
||
for (int j = 0; j < shm->nprocesses; j++) {
|
||
int canAccessPeerIJ, canAccessPeerJI;
|
||
checkCudaErrors(
|
||
cudaDeviceCanAccessPeer(&canAccessPeerJI, shm->devices[j], i));
|
||
checkCudaErrors(
|
||
cudaDeviceCanAccessPeer(&canAccessPeerIJ, i, shm->devices[j]));
|
||
if (!canAccessPeerIJ || !canAccessPeerJI) {
|
||
allPeers = false;
|
||
break;
|
||
}
|
||
}
|
||
if (allPeers) {
|
||
// Enable peers here. This isn't necessary for IPC, but it will
|
||
// setup the peers for the device. For systems that only allow 8
|
||
// peers per GPU at a time, this acts to remove devices from CanAccessPeer
|
||
for (int j = 0; j < shm->nprocesses; j++) {
|
||
checkCudaErrors(cudaSetDevice(i));
|
||
checkCudaErrors(cudaDeviceEnablePeerAccess(shm->devices[j], 0));
|
||
checkCudaErrors(cudaSetDevice(shm->devices[j]));
|
||
checkCudaErrors(cudaDeviceEnablePeerAccess(i, 0));
|
||
}
|
||
shm->devices[shm->nprocesses++] = i;
|
||
if (shm->nprocesses >= MAX_DEVICES) break;
|
||
} else {
|
||
printf(
|
||
"Device %d is not peer capable with some other selected peers, "
|
||
"skipping\n",
|
||
i);
|
||
}
|
||
}
|
||
|
||
if (shm->nprocesses == 0) {
|
||
printf("No CUDA devices support IPC\n");
|
||
exit(EXIT_WAIVED);
|
||
}
|
||
|
||
std::vector<ShareableHandle> shareableHandles(shm->nprocesses);
|
||
std::vector<cudaStream_t> streams(shm->nprocesses);
|
||
std::vector<cudaMemPool_t> pools(shm->nprocesses);
|
||
|
||
// Now allocate memory for each process and fill the shared
|
||
// memory buffer with the export data and get memPool handles to communicate
|
||
for (i = 0; i < shm->nprocesses; i++) {
|
||
void *ptr = NULL;
|
||
checkCudaErrors(cudaSetDevice(shm->devices[i]));
|
||
checkCudaErrors(
|
||
cudaStreamCreateWithFlags(&streams[i], cudaStreamNonBlocking));
|
||
// Allocate an explicit pool with IPC capabilities
|
||
cudaMemPoolProps poolProps;
|
||
memset(&poolProps, 0, sizeof(cudaMemPoolProps));
|
||
poolProps.allocType = cudaMemAllocationTypePinned;
|
||
poolProps.handleTypes = cudaMemHandleTypePosixFileDescriptor;
|
||
|
||
poolProps.location.type = cudaMemLocationTypeDevice;
|
||
poolProps.location.id = shm->devices[i];
|
||
|
||
checkCudaErrors(cudaMemPoolCreate(&pools[i], &poolProps));
|
||
|
||
// Query the shareable handle for the pool
|
||
cudaMemAllocationHandleType handleType =
|
||
cudaMemHandleTypePosixFileDescriptor;
|
||
// Allocate memory in a stream from the pool just created
|
||
checkCudaErrors(cudaMallocAsync(&ptr, DATA_SIZE, pools[i], streams[i]));
|
||
|
||
checkCudaErrors(cudaMemPoolExportToShareableHandle(
|
||
&shareableHandles[i], pools[i], handleType, 0));
|
||
|
||
// Get the opaque ‘bag-of-bits’ representing the allocation
|
||
memset((void *)&shm->exportPtrData[i], 0, sizeof(cudaMemPoolPtrExportData));
|
||
checkCudaErrors(cudaMemPoolExportPointer(
|
||
(cudaMemPoolPtrExportData *)&shm->exportPtrData[i], ptr));
|
||
ptrs.push_back(ptr);
|
||
}
|
||
|
||
// Launch the child processes!
|
||
for (i = 0; i < shm->nprocesses; i++) {
|
||
char devIdx[10];
|
||
char *const args[] = {app, devIdx, NULL};
|
||
Process process;
|
||
|
||
SPRINTF(devIdx, "%d", i);
|
||
|
||
if (spawnProcess(&process, app, args)) {
|
||
printf("Failed to create process\n");
|
||
exit(EXIT_FAILURE);
|
||
}
|
||
|
||
processes.push_back(process);
|
||
}
|
||
|
||
barrierWait(&shm->barrier, &shm->sense, (unsigned int)(shm->nprocesses + 1));
|
||
|
||
ipcHandle *ipcParentHandle = NULL;
|
||
checkIpcErrors(ipcCreateSocket(ipcParentHandle, ipcName, processes));
|
||
checkIpcErrors(
|
||
ipcSendShareableHandles(ipcParentHandle, shareableHandles, processes));
|
||
|
||
// Close the shareable handles as they are not needed anymore.
|
||
for (int i = 0; i < shm->nprocesses; i++) {
|
||
checkIpcErrors(ipcCloseShareableHandle(shareableHandles[i]));
|
||
}
|
||
checkIpcErrors(ipcCloseSocket(ipcParentHandle));
|
||
|
||
// And wait for them to finish
|
||
for (i = 0; i < processes.size(); i++) {
|
||
if (waitProcess(&processes[i]) != EXIT_SUCCESS) {
|
||
printf("Process %d failed!\n", i);
|
||
exit(EXIT_FAILURE);
|
||
}
|
||
}
|
||
|
||
// Clean up!
|
||
for (i = 0; i < shm->nprocesses; i++) {
|
||
checkCudaErrors(cudaSetDevice(shm->devices[i]));
|
||
checkCudaErrors(cudaFreeAsync(ptrs[i], streams[i]));
|
||
checkCudaErrors(cudaStreamSynchronize(streams[i]));
|
||
checkCudaErrors(cudaMemPoolDestroy(pools[i]));
|
||
}
|
||
|
||
sharedMemoryClose(&info);
|
||
}
|
||
|
||
// Host code
|
||
int main(int argc, char **argv) {
|
||
#if defined(__arm__) || defined(__aarch64__) || defined(WIN32) || \
|
||
defined(_WIN32) || defined(WIN64) || defined(_WIN64)
|
||
printf("Not supported on ARM\n");
|
||
return EXIT_WAIVED;
|
||
#else
|
||
if (argc == 1) {
|
||
parentProcess(argv[0]);
|
||
} else {
|
||
childProcess(atoi(argv[1]));
|
||
}
|
||
return EXIT_SUCCESS;
|
||
#endif
|
||
}
|