mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-20 03:35:49 +08:00
97 lines
4.5 KiB
Plaintext
97 lines
4.5 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <cooperative_groups.h>
|
|
|
|
namespace cg = cooperative_groups;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// On G80-class hardware 24-bit multiplication takes 4 clocks per warp
|
|
// (the same as for floating point multiplication and addition),
|
|
// whereas full 32-bit multiplication takes 16 clocks per warp.
|
|
// So if integer multiplication operands are guaranteed to fit into 24 bits
|
|
// (always lie within [-8M, 8M - 1] range in signed case),
|
|
// explicit 24-bit multiplication is preferred for performance.
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
#define IMUL(a, b) __mul24(a, b)
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Calculate scalar products of VectorN vectors of ElementN elements on GPU
|
|
// Parameters restrictions:
|
|
// 1) ElementN is strongly preferred to be a multiple of warp size to
|
|
// meet alignment constraints of memory coalescing.
|
|
// 2) ACCUM_N must be a power of two.
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
#define ACCUM_N 1024
|
|
__global__ void scalarProdGPU(float *d_C, float *d_A, float *d_B, int vectorN,
|
|
int elementN) {
|
|
// Handle to thread block group
|
|
cg::thread_block cta = cg::this_thread_block();
|
|
// Accumulators cache
|
|
__shared__ float accumResult[ACCUM_N];
|
|
|
|
////////////////////////////////////////////////////////////////////////////
|
|
// Cycle through every pair of vectors,
|
|
// taking into account that vector counts can be different
|
|
// from total number of thread blocks
|
|
////////////////////////////////////////////////////////////////////////////
|
|
for (int vec = blockIdx.x; vec < vectorN; vec += gridDim.x) {
|
|
int vectorBase = IMUL(elementN, vec);
|
|
int vectorEnd = vectorBase + elementN;
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// Each accumulator cycles through vectors with
|
|
// stride equal to number of total number of accumulators ACCUM_N
|
|
// At this stage ACCUM_N is only preferred be a multiple of warp size
|
|
// to meet memory coalescing alignment constraints.
|
|
////////////////////////////////////////////////////////////////////////
|
|
for (int iAccum = threadIdx.x; iAccum < ACCUM_N; iAccum += blockDim.x) {
|
|
float sum = 0;
|
|
|
|
for (int pos = vectorBase + iAccum; pos < vectorEnd; pos += ACCUM_N)
|
|
sum += d_A[pos] * d_B[pos];
|
|
|
|
accumResult[iAccum] = sum;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// Perform tree-like reduction of accumulators' results.
|
|
// ACCUM_N has to be power of two at this stage
|
|
////////////////////////////////////////////////////////////////////////
|
|
for (int stride = ACCUM_N / 2; stride > 0; stride >>= 1) {
|
|
cg::sync(cta);
|
|
|
|
for (int iAccum = threadIdx.x; iAccum < stride; iAccum += blockDim.x)
|
|
accumResult[iAccum] += accumResult[stride + iAccum];
|
|
}
|
|
|
|
cg::sync(cta);
|
|
|
|
if (threadIdx.x == 0) d_C[vec] = accumResult[0];
|
|
}
|
|
}
|