mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-20 03:45:54 +08:00
114 lines
3.5 KiB
Plaintext
114 lines
3.5 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Demonstration of inline PTX (assembly language) usage in CUDA kernels
|
|
*/
|
|
|
|
// System includes
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
|
|
// CUDA runtime
|
|
#include <cuda_runtime.h>
|
|
|
|
// helper functions and utilities to work with CUDA
|
|
#include <helper_functions.h>
|
|
#include <helper_cuda.h>
|
|
|
|
__global__ void sequence_gpu(int *d_ptr, int length)
|
|
{
|
|
int elemID = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
if (elemID < length)
|
|
{
|
|
unsigned int laneid;
|
|
//This command gets the lane ID within the current warp
|
|
asm("mov.u32 %0, %%laneid;" : "=r"(laneid));
|
|
d_ptr[elemID] = laneid;
|
|
}
|
|
}
|
|
|
|
|
|
void sequence_cpu(int *h_ptr, int length)
|
|
{
|
|
for (int elemID=0; elemID<length; elemID++)
|
|
{
|
|
h_ptr[elemID] = elemID % 32;
|
|
}
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
printf("CUDA inline PTX assembler sample\n");
|
|
|
|
const int N = 1000;
|
|
|
|
int dev = findCudaDevice(argc, (const char **) argv);
|
|
|
|
if (dev == -1)
|
|
{
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
int *d_ptr;
|
|
checkCudaErrors(cudaMalloc(&d_ptr, N * sizeof(int)));
|
|
|
|
int *h_ptr;
|
|
checkCudaErrors(cudaMallocHost(&h_ptr, N * sizeof(int)));
|
|
|
|
dim3 cudaBlockSize(256,1,1);
|
|
dim3 cudaGridSize((N + cudaBlockSize.x - 1) / cudaBlockSize.x, 1, 1);
|
|
sequence_gpu<<<cudaGridSize, cudaBlockSize>>>(d_ptr, N);
|
|
checkCudaErrors(cudaGetLastError());
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
|
|
sequence_cpu(h_ptr, N);
|
|
|
|
int *h_d_ptr;
|
|
checkCudaErrors(cudaMallocHost(&h_d_ptr, N *sizeof(int)));
|
|
checkCudaErrors(cudaMemcpy(h_d_ptr, d_ptr, N *sizeof(int), cudaMemcpyDeviceToHost));
|
|
|
|
bool bValid = true;
|
|
|
|
for (int i=0; i<N && bValid; i++)
|
|
{
|
|
if (h_ptr[i] != h_d_ptr[i])
|
|
{
|
|
bValid = false;
|
|
}
|
|
}
|
|
|
|
printf("Test %s.\n", bValid ? "Successful" : "Failed");
|
|
|
|
checkCudaErrors(cudaFree(d_ptr));
|
|
checkCudaErrors(cudaFreeHost(h_ptr));
|
|
checkCudaErrors(cudaFreeHost(h_d_ptr));
|
|
|
|
return bValid ? EXIT_SUCCESS: EXIT_FAILURE;
|
|
}
|