mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 22:05:49 +08:00
536 lines
15 KiB
C++
536 lines
15 KiB
C++
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
||
*
|
||
* Redistribution and use in source and binary forms, with or without
|
||
* modification, are permitted provided that the following conditions
|
||
* are met:
|
||
* * Redistributions of source code must retain the above copyright
|
||
* notice, this list of conditions and the following disclaimer.
|
||
* * Redistributions in binary form must reproduce the above copyright
|
||
* notice, this list of conditions and the following disclaimer in the
|
||
* documentation and/or other materials provided with the distribution.
|
||
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
||
* contributors may be used to endorse or promote products derived
|
||
* from this software without specific prior written permission.
|
||
*
|
||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
*/
|
||
|
||
/*
|
||
Recursive Gaussian filter
|
||
sgreen 8/1/08
|
||
|
||
This code sample implements a Gaussian blur using Deriche's recursive method:
|
||
http://citeseer.ist.psu.edu/deriche93recursively.html
|
||
|
||
This is similar to the box filter sample in the SDK, but it uses the previous
|
||
outputs of the filter as well as the previous inputs. This is also known as an
|
||
IIR (infinite impulse response) filter, since its response to an input impulse
|
||
can last forever.
|
||
|
||
The main advantage of this method is that the execution time is independent of
|
||
the filter width.
|
||
|
||
The GPU processes columns of the image in parallel. To avoid uncoalesced reads
|
||
for the row pass we transpose the image and then transpose it back again
|
||
afterwards.
|
||
|
||
The implementation is based on code from the CImg library:
|
||
http://cimg.sourceforge.net/
|
||
Thanks to David Tschumperl<72> and all the CImg contributors!
|
||
*/
|
||
|
||
#pragma warning(disable : 4819)
|
||
|
||
// OpenGL Graphics includes
|
||
#include <helper_gl.h>
|
||
#if defined(__APPLE__) || defined(MACOSX)
|
||
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
|
||
#include <GLUT/glut.h>
|
||
#ifndef glutCloseFunc
|
||
#define glutCloseFunc glutWMCloseFunc
|
||
#endif
|
||
#else
|
||
#include <GL/freeglut.h>
|
||
#endif
|
||
|
||
// CUDA includes and interop headers
|
||
#include <cuda_runtime.h>
|
||
#include <cuda_gl_interop.h>
|
||
|
||
// CUDA utilities and system includes
|
||
#include <helper_functions.h>
|
||
#include <helper_cuda.h> // includes cuda.h and cuda_runtime_api.h
|
||
|
||
// Includes
|
||
#include <stdlib.h>
|
||
#include <stdio.h>
|
||
#include <string.h>
|
||
#include <math.h>
|
||
|
||
#define MAX(a, b) ((a > b) ? a : b)
|
||
|
||
#define USE_SIMPLE_FILTER 0
|
||
|
||
#define MAX_EPSILON_ERROR 5.0f
|
||
#define THRESHOLD 0.15f
|
||
|
||
// Define the files that are to be save and the reference images for validation
|
||
const char *sOriginal[] = {"teapot512_10.ppm", "teapot512_14.ppm", "teapot512_18.ppm",
|
||
"teapot512_22.ppm", NULL};
|
||
|
||
const char *sReference[] = {"ref_10.ppm", "ref_14.ppm", "ref_18.ppm",
|
||
"ref_22.ppm", NULL};
|
||
|
||
const char *image_filename = "teapot512.ppm";
|
||
float sigma = 10.0f;
|
||
int order = 0;
|
||
int nthreads = 64; // number of threads per block
|
||
|
||
unsigned int width, height;
|
||
unsigned int *h_img = NULL;
|
||
unsigned int *d_img = NULL;
|
||
unsigned int *d_temp = NULL;
|
||
|
||
GLuint pbo = 0; // OpenGL pixel buffer object
|
||
GLuint texid = 0; // texture
|
||
|
||
cudaGraphicsResource_t cuda_vbo_resource;
|
||
|
||
StopWatchInterface *timer = 0;
|
||
|
||
// Auto-Verification Code
|
||
const int frameCheckNumber = 4;
|
||
int fpsCount = 0; // FPS count for averaging
|
||
int fpsLimit = 1; // FPS limit for sampling
|
||
unsigned int frameCount = 0;
|
||
|
||
int *pArgc = NULL;
|
||
char **pArgv = NULL;
|
||
|
||
bool runBenchmark = false;
|
||
|
||
const char *sSDKsample = "CUDA Recursive Gaussian";
|
||
|
||
extern "C" void transpose(unsigned int *d_src, unsigned int *d_dest,
|
||
unsigned int width, int height);
|
||
|
||
extern "C" void gaussianFilterRGBA(unsigned int *d_src, unsigned int *d_dest,
|
||
unsigned int *d_temp, int width, int height,
|
||
float sigma, int order, int nthreads);
|
||
|
||
void cleanup();
|
||
|
||
void computeFPS() {
|
||
frameCount++;
|
||
fpsCount++;
|
||
|
||
if (fpsCount == fpsLimit) {
|
||
char fps[256];
|
||
float ifps = 1.f / (sdkGetAverageTimerValue(&timer) / 1000.f);
|
||
sprintf(fps, "%s (sigma=%4.2f): %3.1f fps", sSDKsample, sigma, ifps);
|
||
|
||
glutSetWindowTitle(fps);
|
||
fpsCount = 0;
|
||
|
||
fpsLimit = ftoi(MAX(ifps, 1.f));
|
||
sdkResetTimer(&timer);
|
||
}
|
||
}
|
||
|
||
// display results using OpenGL
|
||
void display() {
|
||
sdkStartTimer(&timer);
|
||
|
||
// execute filter, writing results to pbo
|
||
unsigned int *d_result;
|
||
checkCudaErrors(cudaGraphicsMapResources(1, &cuda_vbo_resource, 0));
|
||
size_t num_bytes;
|
||
checkCudaErrors(cudaGraphicsResourceGetMappedPointer(
|
||
(void **)&d_result, &num_bytes, cuda_vbo_resource));
|
||
gaussianFilterRGBA(d_img, d_result, d_temp, width, height, sigma, order,
|
||
nthreads);
|
||
|
||
// unmap buffer object
|
||
checkCudaErrors(cudaGraphicsUnmapResources(1, &cuda_vbo_resource, 0));
|
||
|
||
// load texture from pbo
|
||
glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo);
|
||
glBindTexture(GL_TEXTURE_2D, texid);
|
||
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
|
||
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGBA,
|
||
GL_UNSIGNED_BYTE, 0);
|
||
glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0);
|
||
|
||
// display results
|
||
glClear(GL_COLOR_BUFFER_BIT);
|
||
|
||
glEnable(GL_TEXTURE_2D);
|
||
glDisable(GL_DEPTH_TEST);
|
||
|
||
glBegin(GL_QUADS);
|
||
glTexCoord2f(0, 1);
|
||
glVertex2f(0, 0);
|
||
glTexCoord2f(1, 1);
|
||
glVertex2f(1, 0);
|
||
glTexCoord2f(1, 0);
|
||
glVertex2f(1, 1);
|
||
glTexCoord2f(0, 0);
|
||
glVertex2f(0, 1);
|
||
glEnd();
|
||
|
||
glDisable(GL_TEXTURE_2D);
|
||
glutSwapBuffers();
|
||
|
||
sdkStopTimer(&timer);
|
||
|
||
computeFPS();
|
||
}
|
||
|
||
void idle() { glutPostRedisplay(); }
|
||
|
||
void cleanup() {
|
||
sdkDeleteTimer(&timer);
|
||
|
||
checkCudaErrors(cudaFree(d_img));
|
||
checkCudaErrors(cudaFree(d_temp));
|
||
|
||
if (!runBenchmark) {
|
||
if (pbo) {
|
||
// unregister this buffer object with CUDA
|
||
checkCudaErrors(cudaGraphicsUnregisterResource(cuda_vbo_resource));
|
||
glDeleteBuffers(1, &pbo);
|
||
}
|
||
|
||
if (texid) {
|
||
glDeleteTextures(1, &texid);
|
||
}
|
||
}
|
||
}
|
||
|
||
void keyboard(unsigned char key, int x, int y) {
|
||
switch (key) {
|
||
case 27:
|
||
#if defined(__APPLE__) || defined(MACOSX)
|
||
exit(EXIT_SUCCESS);
|
||
#else
|
||
glutDestroyWindow(glutGetWindow());
|
||
return;
|
||
#endif
|
||
break;
|
||
|
||
case '=':
|
||
sigma += 0.1f;
|
||
break;
|
||
|
||
case '-':
|
||
sigma -= 0.1f;
|
||
|
||
if (sigma < 0.0) {
|
||
sigma = 0.0f;
|
||
}
|
||
|
||
break;
|
||
|
||
case '+':
|
||
sigma += 1.0f;
|
||
break;
|
||
|
||
case '_':
|
||
sigma -= 1.0f;
|
||
|
||
if (sigma < 0.0) {
|
||
sigma = 0.0f;
|
||
}
|
||
|
||
break;
|
||
|
||
case '0':
|
||
order = 0;
|
||
break;
|
||
|
||
case '1':
|
||
order = 1;
|
||
sigma = 0.5f;
|
||
break;
|
||
|
||
case '2':
|
||
order = 2;
|
||
sigma = 0.5f;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
printf("sigma = %f\n", sigma);
|
||
glutPostRedisplay();
|
||
}
|
||
|
||
void reshape(int x, int y) {
|
||
glViewport(0, 0, x, y);
|
||
|
||
glMatrixMode(GL_MODELVIEW);
|
||
glLoadIdentity();
|
||
|
||
glMatrixMode(GL_PROJECTION);
|
||
glLoadIdentity();
|
||
glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0);
|
||
}
|
||
|
||
void initCudaBuffers() {
|
||
unsigned int size = width * height * sizeof(unsigned int);
|
||
|
||
// allocate device memory
|
||
checkCudaErrors(cudaMalloc((void **)&d_img, size));
|
||
checkCudaErrors(cudaMalloc((void **)&d_temp, size));
|
||
|
||
checkCudaErrors(cudaMemcpy(d_img, h_img, size, cudaMemcpyHostToDevice));
|
||
|
||
sdkCreateTimer(&timer);
|
||
}
|
||
|
||
void initGLBuffers() {
|
||
// create pixel buffer object to store final image
|
||
glGenBuffers(1, &pbo);
|
||
glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo);
|
||
glBufferData(GL_PIXEL_UNPACK_BUFFER_ARB, width * height * sizeof(GLubyte) * 4,
|
||
h_img, GL_STREAM_DRAW_ARB);
|
||
|
||
glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0);
|
||
checkCudaErrors(cudaGraphicsGLRegisterBuffer(
|
||
&cuda_vbo_resource, pbo, cudaGraphicsRegisterFlagsWriteDiscard));
|
||
|
||
// create texture for display
|
||
glGenTextures(1, &texid);
|
||
glBindTexture(GL_TEXTURE_2D, texid);
|
||
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0, GL_RGBA,
|
||
GL_UNSIGNED_BYTE, NULL);
|
||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
||
glBindTexture(GL_TEXTURE_2D, 0);
|
||
}
|
||
|
||
void initGL(int *argc, char **argv) {
|
||
glutInit(argc, argv);
|
||
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);
|
||
glutInitWindowSize(width, height);
|
||
glutCreateWindow(sSDKsample);
|
||
glutDisplayFunc(display);
|
||
glutKeyboardFunc(keyboard);
|
||
glutReshapeFunc(reshape);
|
||
glutIdleFunc(idle);
|
||
|
||
#if defined(__APPLE__) || defined(MACOSX)
|
||
atexit(cleanup);
|
||
#else
|
||
glutCloseFunc(cleanup);
|
||
#endif
|
||
|
||
printf("Press '+' and '-' to change filter width\n");
|
||
printf("0, 1, 2 - change filter order\n");
|
||
|
||
if (!isGLVersionSupported(2, 0) ||
|
||
!areGLExtensionsSupported(
|
||
"GL_ARB_vertex_buffer_object GL_ARB_pixel_buffer_object")) {
|
||
fprintf(stderr, "Required OpenGL extensions missing.");
|
||
exit(EXIT_FAILURE);
|
||
}
|
||
}
|
||
|
||
void benchmark(int iterations) {
|
||
// allocate memory for result
|
||
unsigned int *d_result;
|
||
unsigned int size = width * height * sizeof(unsigned int);
|
||
checkCudaErrors(cudaMalloc((void **)&d_result, size));
|
||
|
||
// warm-up
|
||
gaussianFilterRGBA(d_img, d_result, d_temp, width, height, sigma, order,
|
||
nthreads);
|
||
|
||
checkCudaErrors(cudaDeviceSynchronize());
|
||
sdkStartTimer(&timer);
|
||
|
||
// execute the kernel
|
||
for (int i = 0; i < iterations; i++) {
|
||
gaussianFilterRGBA(d_img, d_result, d_temp, width, height, sigma, order,
|
||
nthreads);
|
||
}
|
||
|
||
checkCudaErrors(cudaDeviceSynchronize());
|
||
sdkStopTimer(&timer);
|
||
|
||
// check if kernel execution generated an error
|
||
getLastCudaError("Kernel execution failed");
|
||
|
||
printf("Processing time: %f (ms)\n", sdkGetTimerValue(&timer));
|
||
printf("%.2f Mpixels/sec\n",
|
||
(width * height * iterations / (sdkGetTimerValue(&timer) / 1000.0f)) /
|
||
1e6);
|
||
|
||
checkCudaErrors(cudaFree(d_result));
|
||
}
|
||
|
||
bool runSingleTest(const char *ref_file, const char *exec_path) {
|
||
// allocate memory for result
|
||
int nTotalErrors = 0;
|
||
unsigned int *d_result;
|
||
unsigned int size = width * height * sizeof(unsigned int);
|
||
checkCudaErrors(cudaMalloc((void **)&d_result, size));
|
||
|
||
// warm-up
|
||
gaussianFilterRGBA(d_img, d_result, d_temp, width, height, sigma, order,
|
||
nthreads);
|
||
|
||
checkCudaErrors(cudaDeviceSynchronize());
|
||
sdkStartTimer(&timer);
|
||
|
||
gaussianFilterRGBA(d_img, d_result, d_temp, width, height, sigma, order,
|
||
nthreads);
|
||
checkCudaErrors(cudaDeviceSynchronize());
|
||
getLastCudaError("Kernel execution failed");
|
||
sdkStopTimer(&timer);
|
||
|
||
unsigned char *h_result = (unsigned char *)malloc(width * height * 4);
|
||
checkCudaErrors(cudaMemcpy(h_result, d_result, width * height * 4,
|
||
cudaMemcpyDeviceToHost));
|
||
|
||
char dump_file[1024];
|
||
sprintf(dump_file, "teapot512_%02d.ppm", (int)sigma);
|
||
sdkSavePPM4ub(dump_file, h_result, width, height);
|
||
|
||
if (!sdkComparePPM(dump_file, sdkFindFilePath(ref_file, exec_path),
|
||
MAX_EPSILON_ERROR, THRESHOLD, false)) {
|
||
nTotalErrors++;
|
||
}
|
||
|
||
printf("Processing time: %f (ms)\n", sdkGetTimerValue(&timer));
|
||
printf("%.2f Mpixels/sec\n",
|
||
(width * height / (sdkGetTimerValue(&timer) / 1000.0f)) / 1e6);
|
||
|
||
checkCudaErrors(cudaFree(d_result));
|
||
free(h_result);
|
||
|
||
printf("Summary: %d errors!\n", nTotalErrors);
|
||
|
||
printf(nTotalErrors == 0 ? "Test passed\n" : "Test failed!\n");
|
||
return (nTotalErrors == 0);
|
||
}
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Program main
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
int main(int argc, char **argv) {
|
||
pArgc = &argc;
|
||
pArgv = argv;
|
||
char *ref_file = NULL;
|
||
|
||
#if defined(__linux__)
|
||
setenv("DISPLAY", ":0", 0);
|
||
#endif
|
||
|
||
printf("%s Starting...\n\n", sSDKsample);
|
||
|
||
printf(
|
||
"NOTE: The CUDA Samples are not meant for performance measurements. "
|
||
"Results may vary when GPU Boost is enabled.\n\n");
|
||
|
||
// use command-line specified CUDA device, otherwise use device with highest
|
||
// Gflops/s
|
||
if (argc > 1) {
|
||
if (checkCmdLineFlag(argc, (const char **)argv, "file")) {
|
||
getCmdLineArgumentString(argc, (const char **)argv, "file", &ref_file);
|
||
fpsLimit = frameCheckNumber;
|
||
}
|
||
}
|
||
|
||
// Get the path of the filename
|
||
char *filename;
|
||
|
||
if (getCmdLineArgumentString(argc, (const char **)argv, "image", &filename)) {
|
||
image_filename = filename;
|
||
}
|
||
|
||
// load image
|
||
char *image_path = sdkFindFilePath(image_filename, argv[0]);
|
||
|
||
if (image_path == NULL) {
|
||
fprintf(stderr, "Error unable to find and load image file: '%s'\n",
|
||
image_filename);
|
||
exit(EXIT_FAILURE);
|
||
}
|
||
|
||
sdkLoadPPM4ub(image_path, (unsigned char **)&h_img, &width, &height);
|
||
|
||
if (!h_img) {
|
||
printf("Error unable to load PPM file: '%s'\n", image_path);
|
||
exit(EXIT_FAILURE);
|
||
}
|
||
|
||
printf("Loaded '%s', %d x %d pixels\n", image_path, width, height);
|
||
|
||
if (checkCmdLineFlag(argc, (const char **)argv, "threads")) {
|
||
nthreads = getCmdLineArgumentInt(argc, (const char **)argv, "threads");
|
||
}
|
||
|
||
if (checkCmdLineFlag(argc, (const char **)argv, "sigma")) {
|
||
sigma = getCmdLineArgumentFloat(argc, (const char **)argv, "sigma");
|
||
}
|
||
|
||
runBenchmark = checkCmdLineFlag(argc, (const char **)argv, "benchmark");
|
||
|
||
int device;
|
||
struct cudaDeviceProp prop;
|
||
cudaGetDevice(&device);
|
||
cudaGetDeviceProperties(&prop, device);
|
||
|
||
if (!strncmp("Tesla", prop.name, 5)) {
|
||
printf(
|
||
"Tesla card detected, running the test in benchmark mode (no OpenGL "
|
||
"display)\n");
|
||
// runBenchmark = true;
|
||
runBenchmark = true;
|
||
}
|
||
|
||
// Benchmark or AutoTest mode detected, no OpenGL
|
||
if (runBenchmark == true || ref_file != NULL) {
|
||
findCudaDevice(argc, (const char **)argv);
|
||
} else {
|
||
// First initialize OpenGL context, and then select CUDA device.
|
||
initGL(&argc, argv);
|
||
findCudaDevice(argc, (const char **)argv);
|
||
}
|
||
|
||
initCudaBuffers();
|
||
|
||
if (ref_file) {
|
||
printf("(Automated Testing)\n");
|
||
bool testPassed = runSingleTest(ref_file, argv[0]);
|
||
|
||
cleanup();
|
||
exit(testPassed ? EXIT_SUCCESS : EXIT_FAILURE);
|
||
}
|
||
|
||
if (runBenchmark) {
|
||
printf("(Run Benchmark)\n");
|
||
benchmark(100);
|
||
|
||
cleanup();
|
||
exit(EXIT_SUCCESS);
|
||
}
|
||
|
||
initGLBuffers();
|
||
glutMainLoop();
|
||
|
||
exit(EXIT_SUCCESS);
|
||
}
|