mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 22:25:49 +08:00
696 lines
21 KiB
Plaintext
696 lines
21 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <cstdio>
|
|
#include <vector>
|
|
|
|
#include <helper_cuda.h>
|
|
#include <helper_timer.h>
|
|
|
|
using namespace std;
|
|
|
|
const char *sSampleName = "P2P (Peer-to-Peer) GPU Bandwidth Latency Test";
|
|
|
|
typedef enum {
|
|
P2P_WRITE = 0,
|
|
P2P_READ = 1,
|
|
} P2PDataTransfer;
|
|
|
|
typedef enum {
|
|
CE = 0,
|
|
SM = 1,
|
|
} P2PEngine;
|
|
|
|
P2PEngine p2p_mechanism = CE; // By default use Copy Engine
|
|
|
|
// Macro for checking cuda errors following a cuda launch or api call
|
|
#define cudaCheckError() \
|
|
{ \
|
|
cudaError_t e = cudaGetLastError(); \
|
|
if (e != cudaSuccess) { \
|
|
printf("Cuda failure %s:%d: '%s'\n", __FILE__, __LINE__, \
|
|
cudaGetErrorString(e)); \
|
|
exit(EXIT_FAILURE); \
|
|
} \
|
|
}
|
|
__global__ void delay(volatile int *flag,
|
|
unsigned long long timeout_clocks = 10000000) {
|
|
// Wait until the application notifies us that it has completed queuing up the
|
|
// experiment, or timeout and exit, allowing the application to make progress
|
|
long long int start_clock, sample_clock;
|
|
start_clock = clock64();
|
|
|
|
while (!*flag) {
|
|
sample_clock = clock64();
|
|
|
|
if (sample_clock - start_clock > timeout_clocks) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// This kernel is for demonstration purposes only, not a performant kernel for
|
|
// p2p transfers.
|
|
__global__ void copyp2p(int4 *__restrict__ dest, int4 const *__restrict__ src,
|
|
size_t num_elems) {
|
|
size_t globalId = blockIdx.x * blockDim.x + threadIdx.x;
|
|
size_t gridSize = blockDim.x * gridDim.x;
|
|
|
|
#pragma unroll(5)
|
|
for (size_t i = globalId; i < num_elems; i += gridSize) {
|
|
dest[i] = src[i];
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
// Print help screen
|
|
///////////////////////////////////////////////////////////////////////////
|
|
void printHelp(void) {
|
|
printf("Usage: p2pBandwidthLatencyTest [OPTION]...\n");
|
|
printf("Tests bandwidth/latency of GPU pairs using P2P and without P2P\n");
|
|
printf("\n");
|
|
|
|
printf("Options:\n");
|
|
printf("--help\t\tDisplay this help menu\n");
|
|
printf(
|
|
"--p2p_read\tUse P2P reads for data transfers between GPU pairs and show "
|
|
"corresponding results.\n \t\tDefault used is P2P write operation.\n");
|
|
printf("--sm_copy Use SM intiated p2p transfers instead of Copy Engine\n");
|
|
printf("--numElems=<NUM_OF_INT_ELEMS> Number of integer elements to be used in p2p copy.\n");
|
|
}
|
|
|
|
void checkP2Paccess(int numGPUs) {
|
|
for (int i = 0; i < numGPUs; i++) {
|
|
cudaSetDevice(i);
|
|
cudaCheckError();
|
|
|
|
for (int j = 0; j < numGPUs; j++) {
|
|
int access;
|
|
if (i != j) {
|
|
cudaDeviceCanAccessPeer(&access, i, j);
|
|
cudaCheckError();
|
|
printf("Device=%d %s Access Peer Device=%d\n", i,
|
|
access ? "CAN" : "CANNOT", j);
|
|
}
|
|
}
|
|
}
|
|
printf(
|
|
"\n***NOTE: In case a device doesn't have P2P access to other one, it "
|
|
"falls back to normal memcopy procedure.\nSo you can see lesser "
|
|
"Bandwidth (GB/s) and unstable Latency (us) in those cases.\n\n");
|
|
}
|
|
|
|
void performP2PCopy(int *dest, int destDevice, int *src, int srcDevice,
|
|
int num_elems, int repeat, bool p2paccess,
|
|
cudaStream_t streamToRun) {
|
|
int blockSize = 0;
|
|
int numBlocks = 0;
|
|
|
|
cudaOccupancyMaxPotentialBlockSize(&numBlocks, &blockSize, copyp2p);
|
|
cudaCheckError();
|
|
|
|
if (p2p_mechanism == SM && p2paccess) {
|
|
for (int r = 0; r < repeat; r++) {
|
|
copyp2p<<<numBlocks, blockSize, 0, streamToRun>>>(
|
|
(int4 *)dest, (int4 *)src, num_elems / 4);
|
|
}
|
|
} else {
|
|
for (int r = 0; r < repeat; r++) {
|
|
cudaMemcpyPeerAsync(dest, destDevice, src, srcDevice,
|
|
sizeof(int) * num_elems, streamToRun);
|
|
}
|
|
}
|
|
}
|
|
|
|
void outputBandwidthMatrix(int numElems, int numGPUs, bool p2p, P2PDataTransfer p2p_method) {
|
|
int repeat = 5;
|
|
volatile int *flag = NULL;
|
|
vector<int *> buffers(numGPUs);
|
|
vector<int *> buffersD2D(numGPUs); // buffer for D2D, that is, intra-GPU copy
|
|
vector<cudaEvent_t> start(numGPUs);
|
|
vector<cudaEvent_t> stop(numGPUs);
|
|
vector<cudaStream_t> stream(numGPUs);
|
|
|
|
cudaHostAlloc((void **)&flag, sizeof(*flag), cudaHostAllocPortable);
|
|
cudaCheckError();
|
|
|
|
for (int d = 0; d < numGPUs; d++) {
|
|
cudaSetDevice(d);
|
|
cudaStreamCreateWithFlags(&stream[d], cudaStreamNonBlocking);
|
|
cudaMalloc(&buffers[d], numElems * sizeof(int));
|
|
cudaCheckError();
|
|
cudaMemset(buffers[d], 0, numElems * sizeof(int));
|
|
cudaCheckError();
|
|
cudaMalloc(&buffersD2D[d], numElems * sizeof(int));
|
|
cudaCheckError();
|
|
cudaMemset(buffersD2D[d], 0, numElems * sizeof(int));
|
|
cudaCheckError();
|
|
cudaEventCreate(&start[d]);
|
|
cudaCheckError();
|
|
cudaEventCreate(&stop[d]);
|
|
cudaCheckError();
|
|
}
|
|
|
|
vector<double> bandwidthMatrix(numGPUs * numGPUs);
|
|
|
|
for (int i = 0; i < numGPUs; i++) {
|
|
cudaSetDevice(i);
|
|
|
|
for (int j = 0; j < numGPUs; j++) {
|
|
int access = 0;
|
|
if (p2p) {
|
|
cudaDeviceCanAccessPeer(&access, i, j);
|
|
if (access) {
|
|
cudaDeviceEnablePeerAccess(j, 0);
|
|
cudaCheckError();
|
|
cudaSetDevice(j);
|
|
cudaCheckError();
|
|
cudaDeviceEnablePeerAccess(i, 0);
|
|
cudaCheckError();
|
|
cudaSetDevice(i);
|
|
cudaCheckError();
|
|
}
|
|
}
|
|
|
|
cudaStreamSynchronize(stream[i]);
|
|
cudaCheckError();
|
|
|
|
// Block the stream until all the work is queued up
|
|
// DANGER! - cudaMemcpy*Async may infinitely block waiting for
|
|
// room to push the operation, so keep the number of repeatitions
|
|
// relatively low. Higher repeatitions will cause the delay kernel
|
|
// to timeout and lead to unstable results.
|
|
*flag = 0;
|
|
delay<<<1, 1, 0, stream[i]>>>(flag);
|
|
cudaCheckError();
|
|
cudaEventRecord(start[i], stream[i]);
|
|
cudaCheckError();
|
|
|
|
if (i == j) {
|
|
// Perform intra-GPU, D2D copies
|
|
performP2PCopy(buffers[i], i, buffersD2D[i], i, numElems, repeat,
|
|
access, stream[i]);
|
|
|
|
} else {
|
|
if (p2p_method == P2P_WRITE) {
|
|
performP2PCopy(buffers[j], j, buffers[i], i, numElems, repeat, access,
|
|
stream[i]);
|
|
} else {
|
|
performP2PCopy(buffers[i], i, buffers[j], j, numElems, repeat, access,
|
|
stream[i]);
|
|
}
|
|
}
|
|
|
|
cudaEventRecord(stop[i], stream[i]);
|
|
cudaCheckError();
|
|
|
|
// Release the queued events
|
|
*flag = 1;
|
|
cudaStreamSynchronize(stream[i]);
|
|
cudaCheckError();
|
|
|
|
float time_ms;
|
|
cudaEventElapsedTime(&time_ms, start[i], stop[i]);
|
|
double time_s = time_ms / 1e3;
|
|
|
|
double gb = numElems * sizeof(int) * repeat / (double)1e9;
|
|
if (i == j) {
|
|
gb *= 2; // must count both the read and the write here
|
|
}
|
|
bandwidthMatrix[i * numGPUs + j] = gb / time_s;
|
|
if (p2p && access) {
|
|
cudaDeviceDisablePeerAccess(j);
|
|
cudaSetDevice(j);
|
|
cudaDeviceDisablePeerAccess(i);
|
|
cudaSetDevice(i);
|
|
cudaCheckError();
|
|
}
|
|
}
|
|
}
|
|
|
|
printf(" D\\D");
|
|
|
|
for (int j = 0; j < numGPUs; j++) {
|
|
printf("%6d ", j);
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
for (int i = 0; i < numGPUs; i++) {
|
|
printf("%6d ", i);
|
|
|
|
for (int j = 0; j < numGPUs; j++) {
|
|
printf("%6.02f ", bandwidthMatrix[i * numGPUs + j]);
|
|
}
|
|
|
|
printf("\n");
|
|
}
|
|
|
|
for (int d = 0; d < numGPUs; d++) {
|
|
cudaSetDevice(d);
|
|
cudaFree(buffers[d]);
|
|
cudaFree(buffersD2D[d]);
|
|
cudaCheckError();
|
|
cudaEventDestroy(start[d]);
|
|
cudaCheckError();
|
|
cudaEventDestroy(stop[d]);
|
|
cudaCheckError();
|
|
cudaStreamDestroy(stream[d]);
|
|
cudaCheckError();
|
|
}
|
|
|
|
cudaFreeHost((void *)flag);
|
|
cudaCheckError();
|
|
}
|
|
|
|
void outputBidirectionalBandwidthMatrix(int numElems, int numGPUs, bool p2p) {
|
|
int repeat = 5;
|
|
volatile int *flag = NULL;
|
|
vector<int *> buffers(numGPUs);
|
|
vector<int *> buffersD2D(numGPUs);
|
|
vector<cudaEvent_t> start(numGPUs);
|
|
vector<cudaEvent_t> stop(numGPUs);
|
|
vector<cudaStream_t> stream0(numGPUs);
|
|
vector<cudaStream_t> stream1(numGPUs);
|
|
|
|
cudaHostAlloc((void **)&flag, sizeof(*flag), cudaHostAllocPortable);
|
|
cudaCheckError();
|
|
|
|
for (int d = 0; d < numGPUs; d++) {
|
|
cudaSetDevice(d);
|
|
cudaMalloc(&buffers[d], numElems * sizeof(int));
|
|
cudaMemset(buffers[d], 0, numElems * sizeof(int));
|
|
cudaMalloc(&buffersD2D[d], numElems * sizeof(int));
|
|
cudaMemset(buffersD2D[d], 0, numElems * sizeof(int));
|
|
cudaCheckError();
|
|
cudaEventCreate(&start[d]);
|
|
cudaCheckError();
|
|
cudaEventCreate(&stop[d]);
|
|
cudaCheckError();
|
|
cudaStreamCreateWithFlags(&stream0[d], cudaStreamNonBlocking);
|
|
cudaCheckError();
|
|
cudaStreamCreateWithFlags(&stream1[d], cudaStreamNonBlocking);
|
|
cudaCheckError();
|
|
}
|
|
|
|
vector<double> bandwidthMatrix(numGPUs * numGPUs);
|
|
|
|
for (int i = 0; i < numGPUs; i++) {
|
|
cudaSetDevice(i);
|
|
|
|
for (int j = 0; j < numGPUs; j++) {
|
|
int access = 0;
|
|
if (p2p) {
|
|
cudaDeviceCanAccessPeer(&access, i, j);
|
|
if (access) {
|
|
cudaSetDevice(i);
|
|
cudaDeviceEnablePeerAccess(j, 0);
|
|
cudaCheckError();
|
|
cudaSetDevice(j);
|
|
cudaDeviceEnablePeerAccess(i, 0);
|
|
cudaCheckError();
|
|
}
|
|
}
|
|
|
|
cudaSetDevice(i);
|
|
cudaStreamSynchronize(stream0[i]);
|
|
cudaStreamSynchronize(stream1[j]);
|
|
cudaCheckError();
|
|
|
|
// Block the stream until all the work is queued up
|
|
// DANGER! - cudaMemcpy*Async may infinitely block waiting for
|
|
// room to push the operation, so keep the number of repeatitions
|
|
// relatively low. Higher repeatitions will cause the delay kernel
|
|
// to timeout and lead to unstable results.
|
|
*flag = 0;
|
|
cudaSetDevice(i);
|
|
// No need to block stream1 since it'll be blocked on stream0's event
|
|
delay<<<1, 1, 0, stream0[i]>>>(flag);
|
|
cudaCheckError();
|
|
|
|
// Force stream1 not to start until stream0 does, in order to ensure
|
|
// the events on stream0 fully encompass the time needed for all
|
|
// operations
|
|
cudaEventRecord(start[i], stream0[i]);
|
|
cudaStreamWaitEvent(stream1[j], start[i], 0);
|
|
|
|
if (i == j) {
|
|
// For intra-GPU perform 2 memcopies buffersD2D <-> buffers
|
|
performP2PCopy(buffers[i], i, buffersD2D[i], i, numElems, repeat,
|
|
access, stream0[i]);
|
|
performP2PCopy(buffersD2D[i], i, buffers[i], i, numElems, repeat,
|
|
access, stream1[i]);
|
|
} else {
|
|
if (access && p2p_mechanism == SM) {
|
|
cudaSetDevice(j);
|
|
}
|
|
performP2PCopy(buffers[i], i, buffers[j], j, numElems, repeat, access,
|
|
stream1[j]);
|
|
if (access && p2p_mechanism == SM) {
|
|
cudaSetDevice(i);
|
|
}
|
|
performP2PCopy(buffers[j], j, buffers[i], i, numElems, repeat, access,
|
|
stream0[i]);
|
|
}
|
|
|
|
// Notify stream0 that stream1 is complete and record the time of
|
|
// the total transaction
|
|
cudaEventRecord(stop[j], stream1[j]);
|
|
cudaStreamWaitEvent(stream0[i], stop[j], 0);
|
|
cudaEventRecord(stop[i], stream0[i]);
|
|
|
|
// Release the queued operations
|
|
*flag = 1;
|
|
cudaStreamSynchronize(stream0[i]);
|
|
cudaStreamSynchronize(stream1[j]);
|
|
cudaCheckError();
|
|
|
|
float time_ms;
|
|
cudaEventElapsedTime(&time_ms, start[i], stop[i]);
|
|
double time_s = time_ms / 1e3;
|
|
|
|
double gb = 2.0 * numElems * sizeof(int) * repeat / (double)1e9;
|
|
if (i == j) {
|
|
gb *= 2; // must count both the read and the write here
|
|
}
|
|
bandwidthMatrix[i * numGPUs + j] = gb / time_s;
|
|
if (p2p && access) {
|
|
cudaSetDevice(i);
|
|
cudaDeviceDisablePeerAccess(j);
|
|
cudaSetDevice(j);
|
|
cudaDeviceDisablePeerAccess(i);
|
|
}
|
|
}
|
|
}
|
|
|
|
printf(" D\\D");
|
|
|
|
for (int j = 0; j < numGPUs; j++) {
|
|
printf("%6d ", j);
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
for (int i = 0; i < numGPUs; i++) {
|
|
printf("%6d ", i);
|
|
|
|
for (int j = 0; j < numGPUs; j++) {
|
|
printf("%6.02f ", bandwidthMatrix[i * numGPUs + j]);
|
|
}
|
|
|
|
printf("\n");
|
|
}
|
|
|
|
for (int d = 0; d < numGPUs; d++) {
|
|
cudaSetDevice(d);
|
|
cudaFree(buffers[d]);
|
|
cudaFree(buffersD2D[d]);
|
|
cudaCheckError();
|
|
cudaEventDestroy(start[d]);
|
|
cudaCheckError();
|
|
cudaEventDestroy(stop[d]);
|
|
cudaCheckError();
|
|
cudaStreamDestroy(stream0[d]);
|
|
cudaCheckError();
|
|
cudaStreamDestroy(stream1[d]);
|
|
cudaCheckError();
|
|
}
|
|
|
|
cudaFreeHost((void *)flag);
|
|
cudaCheckError();
|
|
}
|
|
|
|
void outputLatencyMatrix(int numGPUs, bool p2p, P2PDataTransfer p2p_method) {
|
|
int repeat = 100;
|
|
int numElems = 4; // perform 1-int4 transfer.
|
|
volatile int *flag = NULL;
|
|
StopWatchInterface *stopWatch = NULL;
|
|
vector<int *> buffers(numGPUs);
|
|
vector<int *> buffersD2D(numGPUs); // buffer for D2D, that is, intra-GPU copy
|
|
vector<cudaStream_t> stream(numGPUs);
|
|
vector<cudaEvent_t> start(numGPUs);
|
|
vector<cudaEvent_t> stop(numGPUs);
|
|
|
|
cudaHostAlloc((void **)&flag, sizeof(*flag), cudaHostAllocPortable);
|
|
cudaCheckError();
|
|
|
|
if (!sdkCreateTimer(&stopWatch)) {
|
|
printf("Failed to create stop watch\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
sdkStartTimer(&stopWatch);
|
|
|
|
for (int d = 0; d < numGPUs; d++) {
|
|
cudaSetDevice(d);
|
|
cudaStreamCreateWithFlags(&stream[d], cudaStreamNonBlocking);
|
|
cudaMalloc(&buffers[d], sizeof(int) * numElems);
|
|
cudaMemset(buffers[d], 0, sizeof(int) * numElems);
|
|
cudaMalloc(&buffersD2D[d], sizeof(int) * numElems);
|
|
cudaMemset(buffersD2D[d], 0, sizeof(int) * numElems);
|
|
cudaCheckError();
|
|
cudaEventCreate(&start[d]);
|
|
cudaCheckError();
|
|
cudaEventCreate(&stop[d]);
|
|
cudaCheckError();
|
|
}
|
|
|
|
vector<double> gpuLatencyMatrix(numGPUs * numGPUs);
|
|
vector<double> cpuLatencyMatrix(numGPUs * numGPUs);
|
|
|
|
for (int i = 0; i < numGPUs; i++) {
|
|
cudaSetDevice(i);
|
|
|
|
for (int j = 0; j < numGPUs; j++) {
|
|
int access = 0;
|
|
if (p2p) {
|
|
cudaDeviceCanAccessPeer(&access, i, j);
|
|
if (access) {
|
|
cudaDeviceEnablePeerAccess(j, 0);
|
|
cudaCheckError();
|
|
cudaSetDevice(j);
|
|
cudaDeviceEnablePeerAccess(i, 0);
|
|
cudaSetDevice(i);
|
|
cudaCheckError();
|
|
}
|
|
}
|
|
cudaStreamSynchronize(stream[i]);
|
|
cudaCheckError();
|
|
|
|
// Block the stream until all the work is queued up
|
|
// DANGER! - cudaMemcpy*Async may infinitely block waiting for
|
|
// room to push the operation, so keep the number of repeatitions
|
|
// relatively low. Higher repeatitions will cause the delay kernel
|
|
// to timeout and lead to unstable results.
|
|
*flag = 0;
|
|
delay<<<1, 1, 0, stream[i]>>>(flag);
|
|
cudaCheckError();
|
|
cudaEventRecord(start[i], stream[i]);
|
|
|
|
sdkResetTimer(&stopWatch);
|
|
if (i == j) {
|
|
// Perform intra-GPU, D2D copies
|
|
performP2PCopy(buffers[i], i, buffersD2D[i], i, numElems, repeat,
|
|
access, stream[i]);
|
|
} else {
|
|
if (p2p_method == P2P_WRITE) {
|
|
performP2PCopy(buffers[j], j, buffers[i], i, numElems, repeat, access,
|
|
stream[i]);
|
|
} else {
|
|
performP2PCopy(buffers[i], i, buffers[j], j, numElems, repeat, access,
|
|
stream[i]);
|
|
}
|
|
}
|
|
float cpu_time_ms = sdkGetTimerValue(&stopWatch);
|
|
|
|
cudaEventRecord(stop[i], stream[i]);
|
|
// Now that the work has been queued up, release the stream
|
|
*flag = 1;
|
|
cudaStreamSynchronize(stream[i]);
|
|
cudaCheckError();
|
|
|
|
float gpu_time_ms;
|
|
cudaEventElapsedTime(&gpu_time_ms, start[i], stop[i]);
|
|
|
|
gpuLatencyMatrix[i * numGPUs + j] = gpu_time_ms * 1e3 / repeat;
|
|
cpuLatencyMatrix[i * numGPUs + j] = cpu_time_ms * 1e3 / repeat;
|
|
if (p2p && access) {
|
|
cudaDeviceDisablePeerAccess(j);
|
|
cudaSetDevice(j);
|
|
cudaDeviceDisablePeerAccess(i);
|
|
cudaSetDevice(i);
|
|
cudaCheckError();
|
|
}
|
|
}
|
|
}
|
|
|
|
printf(" GPU");
|
|
|
|
for (int j = 0; j < numGPUs; j++) {
|
|
printf("%6d ", j);
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
for (int i = 0; i < numGPUs; i++) {
|
|
printf("%6d ", i);
|
|
|
|
for (int j = 0; j < numGPUs; j++) {
|
|
printf("%6.02f ", gpuLatencyMatrix[i * numGPUs + j]);
|
|
}
|
|
|
|
printf("\n");
|
|
}
|
|
|
|
printf("\n CPU");
|
|
|
|
for (int j = 0; j < numGPUs; j++) {
|
|
printf("%6d ", j);
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
for (int i = 0; i < numGPUs; i++) {
|
|
printf("%6d ", i);
|
|
|
|
for (int j = 0; j < numGPUs; j++) {
|
|
printf("%6.02f ", cpuLatencyMatrix[i * numGPUs + j]);
|
|
}
|
|
|
|
printf("\n");
|
|
}
|
|
|
|
for (int d = 0; d < numGPUs; d++) {
|
|
cudaSetDevice(d);
|
|
cudaFree(buffers[d]);
|
|
cudaFree(buffersD2D[d]);
|
|
cudaCheckError();
|
|
cudaEventDestroy(start[d]);
|
|
cudaCheckError();
|
|
cudaEventDestroy(stop[d]);
|
|
cudaCheckError();
|
|
cudaStreamDestroy(stream[d]);
|
|
cudaCheckError();
|
|
}
|
|
|
|
sdkDeleteTimer(&stopWatch);
|
|
|
|
cudaFreeHost((void *)flag);
|
|
cudaCheckError();
|
|
}
|
|
|
|
int main(int argc, char **argv) {
|
|
int numGPUs, numElems = 40000000;
|
|
P2PDataTransfer p2p_method = P2P_WRITE;
|
|
|
|
cudaGetDeviceCount(&numGPUs);
|
|
cudaCheckError();
|
|
|
|
// process command line args
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "help")) {
|
|
printHelp();
|
|
return 0;
|
|
}
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "p2p_read")) {
|
|
p2p_method = P2P_READ;
|
|
}
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "sm_copy")) {
|
|
p2p_mechanism = SM;
|
|
}
|
|
|
|
// number of elements of int to be used in copy.
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "numElems")) {
|
|
numElems = getCmdLineArgumentInt(argc, (const char **)argv, "numElems");
|
|
}
|
|
|
|
printf("[%s]\n", sSampleName);
|
|
|
|
// output devices
|
|
for (int i = 0; i < numGPUs; i++) {
|
|
cudaDeviceProp prop;
|
|
cudaGetDeviceProperties(&prop, i);
|
|
cudaCheckError();
|
|
printf("Device: %d, %s, pciBusID: %x, pciDeviceID: %x, pciDomainID:%x\n", i,
|
|
prop.name, prop.pciBusID, prop.pciDeviceID, prop.pciDomainID);
|
|
}
|
|
|
|
checkP2Paccess(numGPUs);
|
|
|
|
// Check peer-to-peer connectivity
|
|
printf("P2P Connectivity Matrix\n");
|
|
printf(" D\\D");
|
|
|
|
for (int j = 0; j < numGPUs; j++) {
|
|
printf("%6d", j);
|
|
}
|
|
printf("\n");
|
|
|
|
for (int i = 0; i < numGPUs; i++) {
|
|
printf("%6d\t", i);
|
|
for (int j = 0; j < numGPUs; j++) {
|
|
if (i != j) {
|
|
int access;
|
|
cudaDeviceCanAccessPeer(&access, i, j);
|
|
cudaCheckError();
|
|
printf("%6d", (access) ? 1 : 0);
|
|
} else {
|
|
printf("%6d", 1);
|
|
}
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
printf("Unidirectional P2P=Disabled Bandwidth Matrix (GB/s)\n");
|
|
outputBandwidthMatrix(numElems, numGPUs, false, P2P_WRITE);
|
|
printf("Unidirectional P2P=Enabled Bandwidth (P2P Writes) Matrix (GB/s)\n");
|
|
outputBandwidthMatrix(numElems, numGPUs, true, P2P_WRITE);
|
|
if (p2p_method == P2P_READ) {
|
|
printf("Unidirectional P2P=Enabled Bandwidth (P2P Reads) Matrix (GB/s)\n");
|
|
outputBandwidthMatrix(numElems, numGPUs, true, p2p_method);
|
|
}
|
|
printf("Bidirectional P2P=Disabled Bandwidth Matrix (GB/s)\n");
|
|
outputBidirectionalBandwidthMatrix(numElems, numGPUs, false);
|
|
printf("Bidirectional P2P=Enabled Bandwidth Matrix (GB/s)\n");
|
|
outputBidirectionalBandwidthMatrix(numElems, numGPUs, true);
|
|
|
|
printf("P2P=Disabled Latency Matrix (us)\n");
|
|
outputLatencyMatrix(numGPUs, false, P2P_WRITE);
|
|
printf("P2P=Enabled Latency (P2P Writes) Matrix (us)\n");
|
|
outputLatencyMatrix(numGPUs, true, P2P_WRITE);
|
|
if (p2p_method == P2P_READ) {
|
|
printf("P2P=Enabled Latency (P2P Reads) Matrix (us)\n");
|
|
outputLatencyMatrix(numGPUs, true, p2p_method);
|
|
}
|
|
|
|
printf(
|
|
"\nNOTE: The CUDA Samples are not meant for performance measurements. "
|
|
"Results may vary when GPU Boost is enabled.\n");
|
|
|
|
exit(EXIT_SUCCESS);
|
|
}
|