mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 22:25:49 +08:00
328 lines
12 KiB
Plaintext
328 lines
12 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
Bicubic filtering
|
|
See GPU Gems 2: "Fast Third-Order Texture Filtering", Sigg & Hadwiger
|
|
https://developer.nvidia.com/gpugems/gpugems2/part-iii-high-quality-rendering/chapter-20-fast-third-order-texture-filtering
|
|
|
|
Reformulation thanks to Keenan Crane
|
|
*/
|
|
|
|
#ifndef _BICUBICTEXTURE_KERNEL_CUH_
|
|
#define _BICUBICTEXTURE_KERNEL_CUH_
|
|
|
|
enum Mode {
|
|
MODE_NEAREST,
|
|
MODE_BILINEAR,
|
|
MODE_BICUBIC,
|
|
MODE_FAST_BICUBIC,
|
|
MODE_CATROM
|
|
};
|
|
|
|
cudaTextureObject_t texObjPoint, texObjLinear;
|
|
|
|
// w0, w1, w2, and w3 are the four cubic B-spline basis functions
|
|
__host__ __device__ float w0(float a) {
|
|
// return (1.0f/6.0f)*(-a*a*a + 3.0f*a*a - 3.0f*a + 1.0f);
|
|
return (1.0f / 6.0f) * (a * (a * (-a + 3.0f) - 3.0f) + 1.0f); // optimized
|
|
}
|
|
|
|
__host__ __device__ float w1(float a) {
|
|
// return (1.0f/6.0f)*(3.0f*a*a*a - 6.0f*a*a + 4.0f);
|
|
return (1.0f / 6.0f) * (a * a * (3.0f * a - 6.0f) + 4.0f);
|
|
}
|
|
|
|
__host__ __device__ float w2(float a) {
|
|
// return (1.0f/6.0f)*(-3.0f*a*a*a + 3.0f*a*a + 3.0f*a + 1.0f);
|
|
return (1.0f / 6.0f) * (a * (a * (-3.0f * a + 3.0f) + 3.0f) + 1.0f);
|
|
}
|
|
|
|
__host__ __device__ float w3(float a) { return (1.0f / 6.0f) * (a * a * a); }
|
|
|
|
// g0 and g1 are the two amplitude functions
|
|
__device__ float g0(float a) { return w0(a) + w1(a); }
|
|
|
|
__device__ float g1(float a) { return w2(a) + w3(a); }
|
|
|
|
// h0 and h1 are the two offset functions
|
|
__device__ float h0(float a) {
|
|
// note +0.5 offset to compensate for CUDA linear filtering convention
|
|
return -1.0f + w1(a) / (w0(a) + w1(a)) + 0.5f;
|
|
}
|
|
|
|
__device__ float h1(float a) { return 1.0f + w3(a) / (w2(a) + w3(a)) + 0.5f; }
|
|
|
|
// filter 4 values using cubic splines
|
|
template <class T>
|
|
__device__ T cubicFilter(float x, T c0, T c1, T c2, T c3) {
|
|
T r;
|
|
r = c0 * w0(x);
|
|
r += c1 * w1(x);
|
|
r += c2 * w2(x);
|
|
r += c3 * w3(x);
|
|
return r;
|
|
}
|
|
|
|
// slow but precise bicubic lookup using 16 texture lookups
|
|
template <class T, class R> // texture data type, return type
|
|
__device__ R tex2DBicubic(const cudaTextureObject_t tex, float x, float y) {
|
|
x -= 0.5f;
|
|
y -= 0.5f;
|
|
float px = floorf(x);
|
|
float py = floorf(y);
|
|
float fx = x - px;
|
|
float fy = y - py;
|
|
|
|
return cubicFilter<R>(
|
|
fy, cubicFilter<R>(
|
|
fx, tex2D<R>(tex, px - 1, py - 1), tex2D<R>(tex, px, py - 1),
|
|
tex2D<R>(tex, px + 1, py - 1), tex2D<R>(tex, px + 2, py - 1)),
|
|
cubicFilter<R>(fx, tex2D<R>(tex, px - 1, py), tex2D<R>(tex, px, py),
|
|
tex2D<R>(tex, px + 1, py), tex2D<R>(tex, px + 2, py)),
|
|
cubicFilter<R>(fx, tex2D<R>(tex, px - 1, py + 1),
|
|
tex2D<R>(tex, px, py + 1), tex2D<R>(tex, px + 1, py + 1),
|
|
tex2D<R>(tex, px + 2, py + 1)),
|
|
cubicFilter<R>(fx, tex2D<R>(tex, px - 1, py + 2),
|
|
tex2D<R>(tex, px, py + 2), tex2D<R>(tex, px + 1, py + 2),
|
|
tex2D<R>(tex, px + 2, py + 2)));
|
|
}
|
|
|
|
// fast bicubic texture lookup using 4 bilinear lookups
|
|
// assumes texture is set to non-normalized coordinates, point sampling
|
|
template <class T, class R> // texture data type, return type
|
|
__device__ R tex2DFastBicubic(const cudaTextureObject_t tex, float x, float y) {
|
|
x -= 0.5f;
|
|
y -= 0.5f;
|
|
float px = floorf(x);
|
|
float py = floorf(y);
|
|
float fx = x - px;
|
|
float fy = y - py;
|
|
|
|
// note: we could store these functions in a lookup table texture, but maths
|
|
// is cheap
|
|
float g0x = g0(fx);
|
|
float g1x = g1(fx);
|
|
float h0x = h0(fx);
|
|
float h1x = h1(fx);
|
|
float h0y = h0(fy);
|
|
float h1y = h1(fy);
|
|
|
|
R r = g0(fy) * (g0x * tex2D<R>(tex, px + h0x, py + h0y) +
|
|
g1x * tex2D<R>(tex, px + h1x, py + h0y)) +
|
|
g1(fy) * (g0x * tex2D<R>(tex, px + h0x, py + h1y) +
|
|
g1x * tex2D<R>(tex, px + h1x, py + h1y));
|
|
return r;
|
|
}
|
|
|
|
// higher-precision 2D bilinear lookup
|
|
template <class T, class R> // texture data type, return type
|
|
__device__ R tex2DBilinear(const cudaTextureObject_t tex, float x, float y) {
|
|
x -= 0.5f;
|
|
y -= 0.5f;
|
|
float px = floorf(x); // integer position
|
|
float py = floorf(y);
|
|
float fx = x - px; // fractional position
|
|
float fy = y - py;
|
|
px += 0.5f;
|
|
py += 0.5f;
|
|
|
|
return lerp(lerp(tex2D<R>(tex, px, py), tex2D<R>(tex, px + 1.0f, py), fx),
|
|
lerp(tex2D<R>(tex, px, py + 1.0f),
|
|
tex2D<R>(tex, px + 1.0f, py + 1.0f), fx),
|
|
fy);
|
|
}
|
|
|
|
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 200
|
|
|
|
/*
|
|
bilinear 2D texture lookup using tex2Dgather function
|
|
- tex2Dgather() returns the four neighbouring samples in a single texture
|
|
lookup
|
|
- it is only supported on the Fermi architecture
|
|
- you can select which component to fetch using the "comp" parameter
|
|
- it can be used to efficiently implement custom texture filters
|
|
|
|
The samples are returned in a 4-vector in the following order:
|
|
x: (0, 1)
|
|
y: (1, 1)
|
|
z: (1, 0)
|
|
w: (0, 0)
|
|
*/
|
|
|
|
template <class T, class R> // texture data type, return type
|
|
__device__ float tex2DBilinearGather(const cudaTextureObject_t tex, float x,
|
|
float y, int comp = 0) {
|
|
x -= 0.5f;
|
|
y -= 0.5f;
|
|
float px = floorf(x); // integer position
|
|
float py = floorf(y);
|
|
float fx = x - px; // fractional position
|
|
float fy = y - py;
|
|
|
|
R samples = tex2Dgather<R>(tex, px + 0.5f, py + 0.5f, comp);
|
|
|
|
return lerp(lerp((float)samples.w, (float)samples.z, fx),
|
|
lerp((float)samples.x, (float)samples.y, fx), fy);
|
|
}
|
|
|
|
#endif
|
|
|
|
// Catmull-Rom interpolation
|
|
|
|
__host__ __device__ float catrom_w0(float a) {
|
|
// return -0.5f*a + a*a - 0.5f*a*a*a;
|
|
return a * (-0.5f + a * (1.0f - 0.5f * a));
|
|
}
|
|
|
|
__host__ __device__ float catrom_w1(float a) {
|
|
// return 1.0f - 2.5f*a*a + 1.5f*a*a*a;
|
|
return 1.0f + a * a * (-2.5f + 1.5f * a);
|
|
}
|
|
|
|
__host__ __device__ float catrom_w2(float a) {
|
|
// return 0.5f*a + 2.0f*a*a - 1.5f*a*a*a;
|
|
return a * (0.5f + a * (2.0f - 1.5f * a));
|
|
}
|
|
|
|
__host__ __device__ float catrom_w3(float a) {
|
|
// return -0.5f*a*a + 0.5f*a*a*a;
|
|
return a * a * (-0.5f + 0.5f * a);
|
|
}
|
|
|
|
template <class T>
|
|
__device__ T catRomFilter(float x, T c0, T c1, T c2, T c3) {
|
|
T r;
|
|
r = c0 * catrom_w0(x);
|
|
r += c1 * catrom_w1(x);
|
|
r += c2 * catrom_w2(x);
|
|
r += c3 * catrom_w3(x);
|
|
return r;
|
|
}
|
|
|
|
// Note - can't use bilinear trick here because of negative lobes
|
|
template <class T, class R> // texture data type, return type
|
|
__device__ R tex2DCatRom(const cudaTextureObject_t tex, float x, float y) {
|
|
x -= 0.5f;
|
|
y -= 0.5f;
|
|
float px = floorf(x);
|
|
float py = floorf(y);
|
|
float fx = x - px;
|
|
float fy = y - py;
|
|
|
|
return catRomFilter<R>(
|
|
fy, catRomFilter<R>(
|
|
fx, tex2D<R>(tex, px - 1, py - 1), tex2D<R>(tex, px, py - 1),
|
|
tex2D<R>(tex, px + 1, py - 1), tex2D<R>(tex, px + 2, py - 1)),
|
|
catRomFilter<R>(fx, tex2D<R>(tex, px - 1, py), tex2D<R>(tex, px, py),
|
|
tex2D<R>(tex, px + 1, py), tex2D<R>(tex, px + 2, py)),
|
|
catRomFilter<R>(fx, tex2D<R>(tex, px - 1, py + 1),
|
|
tex2D<R>(tex, px, py + 1), tex2D<R>(tex, px + 1, py + 1),
|
|
tex2D<R>(tex, px + 2, py + 1)),
|
|
catRomFilter<R>(fx, tex2D<R>(tex, px - 1, py + 2),
|
|
tex2D<R>(tex, px, py + 2), tex2D<R>(tex, px + 1, py + 2),
|
|
tex2D<R>(tex, px + 2, py + 2)));
|
|
}
|
|
|
|
// test functions
|
|
|
|
// render image using normal bilinear texture lookup
|
|
__global__ void d_render(uchar4 *d_output, uint width, uint height, float tx,
|
|
float ty, float scale, float cx, float cy,
|
|
cudaTextureObject_t texObj) {
|
|
uint x = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
|
|
uint y = __umul24(blockIdx.y, blockDim.y) + threadIdx.y;
|
|
uint i = __umul24(y, width) + x;
|
|
|
|
float u = (x - cx) * scale + cx + tx;
|
|
float v = (y - cy) * scale + cy + ty;
|
|
|
|
if ((x < width) && (y < height)) {
|
|
// write output color
|
|
float c = tex2D<float>(texObj, u, v);
|
|
// float c = tex2DBilinear<uchar, float>(tex, u, v);
|
|
// float c = tex2DBilinearGather<uchar, uchar4>(tex2, u, v, 0) / 255.0f;
|
|
d_output[i] = make_uchar4(c * 0xff, c * 0xff, c * 0xff, 0);
|
|
}
|
|
}
|
|
|
|
// render image using bicubic texture lookup
|
|
__global__ void d_renderBicubic(uchar4 *d_output, uint width, uint height,
|
|
float tx, float ty, float scale, float cx,
|
|
float cy, cudaTextureObject_t texObj) {
|
|
uint x = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
|
|
uint y = __umul24(blockIdx.y, blockDim.y) + threadIdx.y;
|
|
uint i = __umul24(y, width) + x;
|
|
|
|
float u = (x - cx) * scale + cx + tx;
|
|
float v = (y - cy) * scale + cy + ty;
|
|
|
|
if ((x < width) && (y < height)) {
|
|
// write output color
|
|
float c = tex2DBicubic<uchar, float>(texObj, u, v);
|
|
d_output[i] = make_uchar4(c * 0xff, c * 0xff, c * 0xff, 0);
|
|
}
|
|
}
|
|
|
|
// render image using fast bicubic texture lookup
|
|
__global__ void d_renderFastBicubic(uchar4 *d_output, uint width, uint height,
|
|
float tx, float ty, float scale, float cx,
|
|
float cy, cudaTextureObject_t texObj) {
|
|
uint x = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
|
|
uint y = __umul24(blockIdx.y, blockDim.y) + threadIdx.y;
|
|
uint i = __umul24(y, width) + x;
|
|
|
|
float u = (x - cx) * scale + cx + tx;
|
|
float v = (y - cy) * scale + cy + ty;
|
|
|
|
if ((x < width) && (y < height)) {
|
|
// write output color
|
|
float c = tex2DFastBicubic<uchar, float>(texObj, u, v);
|
|
d_output[i] = make_uchar4(c * 0xff, c * 0xff, c * 0xff, 0);
|
|
}
|
|
}
|
|
|
|
// render image using Catmull-Rom texture lookup
|
|
__global__ void d_renderCatRom(uchar4 *d_output, uint width, uint height,
|
|
float tx, float ty, float scale, float cx,
|
|
float cy, cudaTextureObject_t texObj) {
|
|
uint x = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
|
|
uint y = __umul24(blockIdx.y, blockDim.y) + threadIdx.y;
|
|
uint i = __umul24(y, width) + x;
|
|
|
|
float u = (x - cx) * scale + cx + tx;
|
|
float v = (y - cy) * scale + cy + ty;
|
|
|
|
if ((x < width) && (y < height)) {
|
|
// write output color
|
|
float c = tex2DCatRom<uchar, float>(texObj, u, v);
|
|
d_output[i] = make_uchar4(c * 0xff, c * 0xff, c * 0xff, 0);
|
|
}
|
|
}
|
|
|
|
#endif // _BICUBICTEXTURE_KERNEL_CUH_
|