mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 22:25:49 +08:00
848 lines
26 KiB
C++
848 lines
26 KiB
C++
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* A framework of refactorization process.
|
|
*
|
|
* step 1: compute P*A*Q = L*U by
|
|
* - reordering and
|
|
* - LU with partial pivoting in cusolverSp
|
|
*
|
|
* step 2: set up cusolverRf by (P, Q, L, U)
|
|
*
|
|
* step 3: analyze and refactor A
|
|
*
|
|
* How to use
|
|
* ./cuSolverRf -P=symrcm -file <file>
|
|
* ./cuSolverRf -P=symamd -file <file>
|
|
*
|
|
*/
|
|
|
|
#include "cusolverRf.h"
|
|
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <cuda_runtime.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "cusolverSp.h"
|
|
#include "cusolverSp_LOWLEVEL_PREVIEW.h"
|
|
#include "helper_cuda.h"
|
|
#include "helper_cusolver.h"
|
|
#include "helper_string.h"
|
|
|
|
template <typename T_ELEM>
|
|
int loadMMSparseMatrix(char *filename, char elem_type, bool csrFormat, int *m,
|
|
int *n, int *nnz, T_ELEM **aVal, int **aRowInd,
|
|
int **aColInd, int extendSymMatrix);
|
|
|
|
void UsageRF(void) {
|
|
printf("<options>\n");
|
|
printf("-h : display this help\n");
|
|
printf("-P=<name> : choose a reordering\n");
|
|
printf(" symrcm (Reverse Cuthill-McKee)\n");
|
|
printf(" symamd (Approximate Minimum Degree)\n");
|
|
printf("-file=<filename> : filename containing a matrix in MM format\n");
|
|
printf("-device=<device_id> : <device_id> if want to run on specific GPU\n");
|
|
|
|
exit(0);
|
|
}
|
|
|
|
void parseCommandLineArguments(int argc, char *argv[], struct testOpts &opts) {
|
|
memset(&opts, 0, sizeof(opts));
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "-h")) {
|
|
UsageRF();
|
|
}
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "P")) {
|
|
char *reorderType = NULL;
|
|
getCmdLineArgumentString(argc, (const char **)argv, "P", &reorderType);
|
|
|
|
if (reorderType) {
|
|
if ((STRCASECMP(reorderType, "symrcm") != 0) &&
|
|
(STRCASECMP(reorderType, "symamd") != 0)) {
|
|
printf("\nIncorrect argument passed to -P option\n");
|
|
UsageRF();
|
|
} else {
|
|
opts.reorder = reorderType;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!opts.reorder) {
|
|
opts.reorder = "symrcm"; // Setting default reordering to be symrcm.
|
|
}
|
|
|
|
if (checkCmdLineFlag(argc, (const char **)argv, "file")) {
|
|
char *fileName = 0;
|
|
getCmdLineArgumentString(argc, (const char **)argv, "file", &fileName);
|
|
|
|
if (fileName) {
|
|
opts.sparse_mat_filename = fileName;
|
|
} else {
|
|
printf("\nIncorrect filename passed to -file \n ");
|
|
UsageRF();
|
|
}
|
|
}
|
|
}
|
|
|
|
int main(int argc, char *argv[]) {
|
|
struct testOpts opts;
|
|
cusolverRfHandle_t cusolverRfH = NULL; // refactorization
|
|
cusolverSpHandle_t cusolverSpH =
|
|
NULL; // reordering, permutation and 1st LU factorization
|
|
cusparseHandle_t cusparseH = NULL; // residual evaluation
|
|
cudaStream_t stream = NULL;
|
|
cusparseMatDescr_t descrA = NULL; // A is a base-0 general matrix
|
|
|
|
csrluInfoHost_t info =
|
|
NULL; // opaque info structure for LU with parital pivoting
|
|
|
|
int rowsA = 0; // number of rows of A
|
|
int colsA = 0; // number of columns of A
|
|
int nnzA = 0; // number of nonzeros of A
|
|
int baseA = 0; // base index in CSR format
|
|
// cusolverRf only works for base-0
|
|
|
|
// cusolverRf only works for square matrix,
|
|
// assume n = rowsA = colsA
|
|
|
|
// CSR(A) from I/O
|
|
int *h_csrRowPtrA = NULL; // <int> n+1
|
|
int *h_csrColIndA = NULL; // <int> nnzA
|
|
double *h_csrValA = NULL; // <double> nnzA
|
|
|
|
int *h_Qreorder = NULL; // <int> n
|
|
// reorder to reduce zero fill-in
|
|
// Qreorder = symrcm(A) or Qreroder = symamd(A)
|
|
// B = Q*A*Q^T
|
|
int *h_csrRowPtrB = NULL; // <int> n+1
|
|
int *h_csrColIndB = NULL; // <int> nnzA
|
|
double *h_csrValB = NULL; // <double> nnzA
|
|
int *h_mapBfromA = NULL; // <int> nnzA
|
|
|
|
double *h_x = NULL; // <double> n, x = A \ b
|
|
double *h_b = NULL; // <double> n, b = ones(m,1)
|
|
double *h_r = NULL; // <double> n, r = b - A*x
|
|
|
|
// solve B*(Qx) = Q*b
|
|
double *h_xhat = NULL; // <double> n, Q*x_hat = x
|
|
double *h_bhat = NULL; // <double> n, b_hat = Q*b
|
|
|
|
size_t size_perm = 0;
|
|
size_t size_internal = 0;
|
|
size_t size_lu = 0; // size of working space for csrlu
|
|
void *buffer_cpu = NULL; // working space for
|
|
// - permutation: B = Q*A*Q^T
|
|
// - LU with partial pivoting in cusolverSp
|
|
|
|
// cusolverSp computes LU with partial pivoting
|
|
// Plu*B*Qlu^T = L*U
|
|
// where B = Q*A*Q^T
|
|
//
|
|
// nnzL and nnzU are not known until factorization is done.
|
|
// However upper bound of L+U is known after symbolic analysis of LU.
|
|
int *h_Plu = NULL; // <int> n
|
|
int *h_Qlu = NULL; // <int> n
|
|
|
|
int nnzL = 0;
|
|
int *h_csrRowPtrL = NULL; // <int> n+1
|
|
int *h_csrColIndL = NULL; // <int> nnzL
|
|
double *h_csrValL = NULL; // <double> nnzL
|
|
|
|
int nnzU = 0;
|
|
int *h_csrRowPtrU = NULL; // <int> n+1
|
|
int *h_csrColIndU = NULL; // <int> nnzU
|
|
double *h_csrValU = NULL; // <double> nnzU
|
|
|
|
int *h_P = NULL; // <int> n, P = Plu * Qreorder
|
|
int *h_Q = NULL; // <int> n, Q = Qlu * Qreorder
|
|
|
|
int *d_csrRowPtrA = NULL; // <int> n+1
|
|
int *d_csrColIndA = NULL; // <int> nnzA
|
|
double *d_csrValA = NULL; // <double> nnzA
|
|
double *d_x = NULL; // <double> n, x = A \ b
|
|
double *d_b = NULL; // <double> n, a copy of h_b
|
|
double *d_r = NULL; // <double> n, r = b - A*x
|
|
|
|
int *d_P = NULL; // <int> n, P*A*Q^T = L*U
|
|
int *d_Q = NULL; // <int> n
|
|
|
|
double *d_T = NULL; // working space in cusolverRfSolve
|
|
// |d_T| = n * nrhs
|
|
|
|
// the constants used in residual evaluation, r = b - A*x
|
|
const double minus_one = -1.0;
|
|
const double one = 1.0;
|
|
// the constants used in cusolverRf
|
|
// nzero is the value below which zero pivot is flagged.
|
|
// nboost is the value which is substitured for zero pivot.
|
|
double nzero = 0.0;
|
|
double nboost = 0.0;
|
|
// the constant used in cusolverSp
|
|
// singularity is -1 if A is invertible under tol
|
|
// tol determines the condition of singularity
|
|
// pivot_threshold decides pivoting strategy
|
|
int singularity = 0;
|
|
const double tol = 1.e-14;
|
|
const double pivot_threshold = 1.0;
|
|
// the constants used in cusolverRf
|
|
const cusolverRfFactorization_t fact_alg =
|
|
CUSOLVERRF_FACTORIZATION_ALG0; // default
|
|
const cusolverRfTriangularSolve_t solve_alg =
|
|
CUSOLVERRF_TRIANGULAR_SOLVE_ALG1; // default
|
|
|
|
double x_inf = 0.0; // |x|
|
|
double r_inf = 0.0; // |r|
|
|
double A_inf = 0.0; // |A|
|
|
int errors = 0;
|
|
|
|
double start, stop;
|
|
double time_reorder;
|
|
double time_perm;
|
|
double time_sp_analysis;
|
|
double time_sp_factor;
|
|
double time_sp_solve;
|
|
double time_sp_extract;
|
|
double time_rf_assemble;
|
|
double time_rf_reset;
|
|
double time_rf_refactor;
|
|
double time_rf_solve;
|
|
|
|
parseCommandLineArguments(argc, argv, opts);
|
|
|
|
printf("step 1.1: preparation\n");
|
|
printf("step 1.1: read matrix market format\n");
|
|
|
|
findCudaDevice(argc, (const char **)argv);
|
|
|
|
if (opts.sparse_mat_filename == NULL) {
|
|
opts.sparse_mat_filename = sdkFindFilePath("lap2D_5pt_n100.mtx", argv[0]);
|
|
printf("Using default input file [%s]\n", opts.sparse_mat_filename);
|
|
} else {
|
|
printf("Using input file [%s]\n", opts.sparse_mat_filename);
|
|
}
|
|
|
|
if (opts.sparse_mat_filename) {
|
|
if (loadMMSparseMatrix<double>(opts.sparse_mat_filename, 'd', true, &rowsA,
|
|
&colsA, &nnzA, &h_csrValA, &h_csrRowPtrA,
|
|
&h_csrColIndA, true)) {
|
|
return 1;
|
|
}
|
|
baseA = h_csrRowPtrA[0]; // baseA = {0,1}
|
|
}
|
|
|
|
if (rowsA != colsA) {
|
|
fprintf(stderr, "Error: only support square matrix\n");
|
|
return 1;
|
|
}
|
|
|
|
printf("WARNING: cusolverRf only works for base-0 \n");
|
|
if (baseA) {
|
|
for (int i = 0; i <= rowsA; i++) {
|
|
h_csrRowPtrA[i]--;
|
|
}
|
|
for (int i = 0; i < nnzA; i++) {
|
|
h_csrColIndA[i]--;
|
|
}
|
|
baseA = 0;
|
|
}
|
|
|
|
printf("sparse matrix A is %d x %d with %d nonzeros, base=%d\n", rowsA, colsA,
|
|
nnzA, baseA);
|
|
|
|
checkCudaErrors(cusolverSpCreate(&cusolverSpH));
|
|
checkCudaErrors(cusparseCreate(&cusparseH));
|
|
checkCudaErrors(cudaStreamCreate(&stream));
|
|
|
|
checkCudaErrors(cusolverSpSetStream(cusolverSpH, stream));
|
|
checkCudaErrors(cusparseSetStream(cusparseH, stream));
|
|
|
|
checkCudaErrors(cusparseCreateMatDescr(&descrA));
|
|
checkCudaErrors(cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL));
|
|
|
|
if (baseA) {
|
|
checkCudaErrors(cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ONE));
|
|
} else {
|
|
checkCudaErrors(cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ZERO));
|
|
}
|
|
|
|
h_Qreorder = (int *)malloc(sizeof(int) * colsA);
|
|
|
|
h_csrRowPtrB = (int *)malloc(sizeof(int) * (rowsA + 1));
|
|
h_csrColIndB = (int *)malloc(sizeof(int) * nnzA);
|
|
h_csrValB = (double *)malloc(sizeof(double) * nnzA);
|
|
h_mapBfromA = (int *)malloc(sizeof(int) * nnzA);
|
|
|
|
h_x = (double *)malloc(sizeof(double) * colsA);
|
|
h_b = (double *)malloc(sizeof(double) * rowsA);
|
|
h_r = (double *)malloc(sizeof(double) * rowsA);
|
|
h_xhat = (double *)malloc(sizeof(double) * colsA);
|
|
h_bhat = (double *)malloc(sizeof(double) * rowsA);
|
|
|
|
assert(NULL != h_Qreorder);
|
|
|
|
assert(NULL != h_csrRowPtrB);
|
|
assert(NULL != h_csrColIndB);
|
|
assert(NULL != h_csrValB);
|
|
assert(NULL != h_mapBfromA);
|
|
|
|
assert(NULL != h_x);
|
|
assert(NULL != h_b);
|
|
assert(NULL != h_r);
|
|
assert(NULL != h_xhat);
|
|
assert(NULL != h_bhat);
|
|
|
|
checkCudaErrors(
|
|
cudaMalloc((void **)&d_csrRowPtrA, sizeof(int) * (rowsA + 1)));
|
|
checkCudaErrors(cudaMalloc((void **)&d_csrColIndA, sizeof(int) * nnzA));
|
|
checkCudaErrors(cudaMalloc((void **)&d_csrValA, sizeof(double) * nnzA));
|
|
checkCudaErrors(cudaMalloc((void **)&d_x, sizeof(double) * colsA));
|
|
checkCudaErrors(cudaMalloc((void **)&d_b, sizeof(double) * rowsA));
|
|
checkCudaErrors(cudaMalloc((void **)&d_r, sizeof(double) * rowsA));
|
|
checkCudaErrors(cudaMalloc((void **)&d_P, sizeof(int) * rowsA));
|
|
checkCudaErrors(cudaMalloc((void **)&d_Q, sizeof(int) * colsA));
|
|
checkCudaErrors(cudaMalloc((void **)&d_T, sizeof(double) * rowsA * 1));
|
|
|
|
printf("step 1.2: set right hand side vector (b) to 1\n");
|
|
for (int row = 0; row < rowsA; row++) {
|
|
h_b[row] = 1.0;
|
|
}
|
|
|
|
printf("step 2: reorder the matrix to reduce zero fill-in\n");
|
|
printf(" Q = symrcm(A) or Q = symamd(A) \n");
|
|
start = second();
|
|
start = second();
|
|
|
|
if (0 == strcmp(opts.reorder, "symrcm")) {
|
|
checkCudaErrors(cusolverSpXcsrsymrcmHost(cusolverSpH, rowsA, nnzA, descrA,
|
|
h_csrRowPtrA, h_csrColIndA,
|
|
h_Qreorder));
|
|
} else if (0 == strcmp(opts.reorder, "symamd")) {
|
|
checkCudaErrors(cusolverSpXcsrsymamdHost(cusolverSpH, rowsA, nnzA, descrA,
|
|
h_csrRowPtrA, h_csrColIndA,
|
|
h_Qreorder));
|
|
} else {
|
|
fprintf(stderr, "Error: %s is unknow reordering\n", opts.reorder);
|
|
return 1;
|
|
}
|
|
|
|
stop = second();
|
|
time_reorder = stop - start;
|
|
|
|
printf("step 3: B = Q*A*Q^T\n");
|
|
memcpy(h_csrRowPtrB, h_csrRowPtrA, sizeof(int) * (rowsA + 1));
|
|
memcpy(h_csrColIndB, h_csrColIndA, sizeof(int) * nnzA);
|
|
|
|
start = second();
|
|
start = second();
|
|
|
|
checkCudaErrors(cusolverSpXcsrperm_bufferSizeHost(
|
|
cusolverSpH, rowsA, colsA, nnzA, descrA, h_csrRowPtrB, h_csrColIndB,
|
|
h_Qreorder, h_Qreorder, &size_perm));
|
|
|
|
if (buffer_cpu) {
|
|
free(buffer_cpu);
|
|
}
|
|
buffer_cpu = (void *)malloc(sizeof(char) * size_perm);
|
|
assert(NULL != buffer_cpu);
|
|
|
|
// h_mapBfromA = Identity
|
|
for (int j = 0; j < nnzA; j++) {
|
|
h_mapBfromA[j] = j;
|
|
}
|
|
checkCudaErrors(cusolverSpXcsrpermHost(
|
|
cusolverSpH, rowsA, colsA, nnzA, descrA, h_csrRowPtrB, h_csrColIndB,
|
|
h_Qreorder, h_Qreorder, h_mapBfromA, buffer_cpu));
|
|
|
|
// B = A( mapBfromA )
|
|
for (int j = 0; j < nnzA; j++) {
|
|
h_csrValB[j] = h_csrValA[h_mapBfromA[j]];
|
|
}
|
|
|
|
stop = second();
|
|
time_perm = stop - start;
|
|
|
|
printf("step 4: solve A*x = b by LU(B) in cusolverSp\n");
|
|
|
|
printf("step 4.1: create opaque info structure\n");
|
|
checkCudaErrors(cusolverSpCreateCsrluInfoHost(&info));
|
|
|
|
printf(
|
|
"step 4.2: analyze LU(B) to know structure of Q and R, and upper bound "
|
|
"for nnz(L+U)\n");
|
|
start = second();
|
|
start = second();
|
|
|
|
checkCudaErrors(cusolverSpXcsrluAnalysisHost(
|
|
cusolverSpH, rowsA, nnzA, descrA, h_csrRowPtrB, h_csrColIndB, info));
|
|
|
|
stop = second();
|
|
time_sp_analysis = stop - start;
|
|
|
|
printf("step 4.3: workspace for LU(B)\n");
|
|
checkCudaErrors(cusolverSpDcsrluBufferInfoHost(
|
|
cusolverSpH, rowsA, nnzA, descrA, h_csrValB, h_csrRowPtrB, h_csrColIndB,
|
|
info, &size_internal, &size_lu));
|
|
|
|
if (buffer_cpu) {
|
|
free(buffer_cpu);
|
|
}
|
|
buffer_cpu = (void *)malloc(sizeof(char) * size_lu);
|
|
assert(NULL != buffer_cpu);
|
|
|
|
printf("step 4.4: compute Ppivot*B = L*U \n");
|
|
start = second();
|
|
start = second();
|
|
|
|
checkCudaErrors(cusolverSpDcsrluFactorHost(
|
|
cusolverSpH, rowsA, nnzA, descrA, h_csrValB, h_csrRowPtrB, h_csrColIndB,
|
|
info, pivot_threshold, buffer_cpu));
|
|
|
|
stop = second();
|
|
time_sp_factor = stop - start;
|
|
|
|
// TODO: check singularity by tol
|
|
printf("step 4.5: check if the matrix is singular \n");
|
|
checkCudaErrors(
|
|
cusolverSpDcsrluZeroPivotHost(cusolverSpH, info, tol, &singularity));
|
|
|
|
if (0 <= singularity) {
|
|
fprintf(stderr, "Error: A is not invertible, singularity=%d\n",
|
|
singularity);
|
|
return 1;
|
|
}
|
|
|
|
printf("step 4.6: solve A*x = b \n");
|
|
printf(" i.e. solve B*(Qx) = Q*b \n");
|
|
start = second();
|
|
start = second();
|
|
|
|
// b_hat = Q*b
|
|
for (int j = 0; j < rowsA; j++) {
|
|
h_bhat[j] = h_b[h_Qreorder[j]];
|
|
}
|
|
// B*x_hat = b_hat
|
|
checkCudaErrors(cusolverSpDcsrluSolveHost(cusolverSpH, rowsA, h_bhat, h_xhat,
|
|
info, buffer_cpu));
|
|
|
|
// x = Q^T * x_hat
|
|
for (int j = 0; j < rowsA; j++) {
|
|
h_x[h_Qreorder[j]] = h_xhat[j];
|
|
}
|
|
|
|
stop = second();
|
|
time_sp_solve = stop - start;
|
|
|
|
printf("step 4.7: evaluate residual r = b - A*x (result on CPU)\n");
|
|
// use GPU gemv to compute r = b - A*x
|
|
checkCudaErrors(cudaMemcpy(d_csrRowPtrA, h_csrRowPtrA,
|
|
sizeof(int) * (rowsA + 1),
|
|
cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemcpy(d_csrColIndA, h_csrColIndA, sizeof(int) * nnzA,
|
|
cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemcpy(d_csrValA, h_csrValA, sizeof(double) * nnzA,
|
|
cudaMemcpyHostToDevice));
|
|
|
|
checkCudaErrors(
|
|
cudaMemcpy(d_r, h_b, sizeof(double) * rowsA, cudaMemcpyHostToDevice));
|
|
checkCudaErrors(
|
|
cudaMemcpy(d_x, h_x, sizeof(double) * colsA, cudaMemcpyHostToDevice));
|
|
|
|
/* Wrap raw data into cuSPARSE generic API objects */
|
|
cusparseSpMatDescr_t matA = NULL;
|
|
if (baseA) {
|
|
checkCudaErrors(cusparseCreateCsr(&matA, rowsA, colsA, nnzA, d_csrRowPtrA,
|
|
d_csrColIndA, d_csrValA,
|
|
CUSPARSE_INDEX_32I, CUSPARSE_INDEX_32I,
|
|
CUSPARSE_INDEX_BASE_ONE, CUDA_R_64F));
|
|
} else {
|
|
checkCudaErrors(cusparseCreateCsr(&matA, rowsA, colsA, nnzA, d_csrRowPtrA,
|
|
d_csrColIndA, d_csrValA,
|
|
CUSPARSE_INDEX_32I, CUSPARSE_INDEX_32I,
|
|
CUSPARSE_INDEX_BASE_ZERO, CUDA_R_64F));
|
|
}
|
|
|
|
cusparseDnVecDescr_t vecx = NULL;
|
|
checkCudaErrors(cusparseCreateDnVec(&vecx, colsA, d_x, CUDA_R_64F));
|
|
cusparseDnVecDescr_t vecAx = NULL;
|
|
checkCudaErrors(cusparseCreateDnVec(&vecAx, rowsA, d_r, CUDA_R_64F));
|
|
|
|
/* Allocate workspace for cuSPARSE */
|
|
size_t bufferSize = 0;
|
|
checkCudaErrors(cusparseSpMV_bufferSize(
|
|
cusparseH, CUSPARSE_OPERATION_NON_TRANSPOSE, &minus_one, matA, vecx, &one,
|
|
vecAx, CUDA_R_64F, CUSPARSE_SPMV_ALG_DEFAULT, &bufferSize));
|
|
void *buffer = NULL;
|
|
checkCudaErrors(cudaMalloc(&buffer, bufferSize));
|
|
|
|
checkCudaErrors(cusparseSpMV(cusparseH, CUSPARSE_OPERATION_NON_TRANSPOSE,
|
|
&minus_one, matA, vecx, &one, vecAx, CUDA_R_64F,
|
|
CUSPARSE_SPMV_ALG_DEFAULT, buffer));
|
|
|
|
checkCudaErrors(
|
|
cudaMemcpy(h_r, d_r, sizeof(double) * rowsA, cudaMemcpyDeviceToHost));
|
|
|
|
x_inf = vec_norminf(colsA, h_x);
|
|
r_inf = vec_norminf(rowsA, h_r);
|
|
A_inf = csr_mat_norminf(rowsA, colsA, nnzA, descrA, h_csrValA, h_csrRowPtrA,
|
|
h_csrColIndA);
|
|
|
|
printf("(CPU) |b - A*x| = %E \n", r_inf);
|
|
printf("(CPU) |A| = %E \n", A_inf);
|
|
printf("(CPU) |x| = %E \n", x_inf);
|
|
printf("(CPU) |b - A*x|/(|A|*|x|) = %E \n", r_inf / (A_inf * x_inf));
|
|
|
|
printf("step 5: extract P, Q, L and U from P*B*Q^T = L*U \n");
|
|
printf(" L has implicit unit diagonal\n");
|
|
start = second();
|
|
start = second();
|
|
|
|
checkCudaErrors(cusolverSpXcsrluNnzHost(cusolverSpH, &nnzL, &nnzU, info));
|
|
|
|
h_Plu = (int *)malloc(sizeof(int) * rowsA);
|
|
h_Qlu = (int *)malloc(sizeof(int) * colsA);
|
|
|
|
h_csrValL = (double *)malloc(sizeof(double) * nnzL);
|
|
h_csrRowPtrL = (int *)malloc(sizeof(int) * (rowsA + 1));
|
|
h_csrColIndL = (int *)malloc(sizeof(int) * nnzL);
|
|
|
|
h_csrValU = (double *)malloc(sizeof(double) * nnzU);
|
|
h_csrRowPtrU = (int *)malloc(sizeof(int) * (rowsA + 1));
|
|
h_csrColIndU = (int *)malloc(sizeof(int) * nnzU);
|
|
|
|
assert(NULL != h_Plu);
|
|
assert(NULL != h_Qlu);
|
|
|
|
assert(NULL != h_csrValL);
|
|
assert(NULL != h_csrRowPtrL);
|
|
assert(NULL != h_csrColIndL);
|
|
|
|
assert(NULL != h_csrValU);
|
|
assert(NULL != h_csrRowPtrU);
|
|
assert(NULL != h_csrColIndU);
|
|
|
|
checkCudaErrors(cusolverSpDcsrluExtractHost(
|
|
cusolverSpH, h_Plu, h_Qlu, descrA, h_csrValL, h_csrRowPtrL, h_csrColIndL,
|
|
descrA, h_csrValU, h_csrRowPtrU, h_csrColIndU, info, buffer_cpu));
|
|
|
|
stop = second();
|
|
time_sp_extract = stop - start;
|
|
|
|
printf("nnzL = %d, nnzU = %d\n", nnzL, nnzU);
|
|
|
|
/* B = Qreorder*A*Qreorder^T
|
|
* Plu*B*Qlu^T = L*U
|
|
*
|
|
* (Plu*Qreorder)*A*(Qlu*Qreorder)^T = L*U
|
|
*
|
|
* Let P = Plu*Qreroder, Q = Qlu*Qreorder,
|
|
* then we have
|
|
* P*A*Q^T = L*U
|
|
* which is the fundamental relation in cusolverRf.
|
|
*/
|
|
printf("step 6: form P*A*Q^T = L*U\n");
|
|
|
|
h_P = (int *)malloc(sizeof(int) * rowsA);
|
|
h_Q = (int *)malloc(sizeof(int) * colsA);
|
|
assert(NULL != h_P);
|
|
assert(NULL != h_Q);
|
|
|
|
printf("step 6.1: P = Plu*Qreroder\n");
|
|
// gather operation, P = Qreorder(Plu)
|
|
for (int j = 0; j < rowsA; j++) {
|
|
h_P[j] = h_Qreorder[h_Plu[j]];
|
|
}
|
|
|
|
printf("step 6.2: Q = Qlu*Qreorder \n");
|
|
// gather operation, Q = Qreorder(Qlu)
|
|
for (int j = 0; j < colsA; j++) {
|
|
h_Q[j] = h_Qreorder[h_Qlu[j]];
|
|
}
|
|
|
|
printf("step 7: create cusolverRf handle\n");
|
|
checkCudaErrors(cusolverRfCreate(&cusolverRfH));
|
|
|
|
printf("step 8: set parameters for cusolverRf \n");
|
|
// numerical values for checking "zeros" and for boosting.
|
|
checkCudaErrors(cusolverRfSetNumericProperties(cusolverRfH, nzero, nboost));
|
|
|
|
// choose algorithm for refactorization and solve
|
|
checkCudaErrors(cusolverRfSetAlgs(cusolverRfH, fact_alg, solve_alg));
|
|
|
|
// matrix mode: L and U are CSR format, and L has implicit unit diagonal
|
|
checkCudaErrors(
|
|
cusolverRfSetMatrixFormat(cusolverRfH, CUSOLVERRF_MATRIX_FORMAT_CSR,
|
|
CUSOLVERRF_UNIT_DIAGONAL_ASSUMED_L));
|
|
|
|
// fast mode for matrix assembling
|
|
checkCudaErrors(cusolverRfSetResetValuesFastMode(
|
|
cusolverRfH, CUSOLVERRF_RESET_VALUES_FAST_MODE_ON));
|
|
|
|
printf("step 9: assemble P*A*Q = L*U \n");
|
|
start = second();
|
|
start = second();
|
|
|
|
checkCudaErrors(cusolverRfSetupHost(
|
|
rowsA, nnzA, h_csrRowPtrA, h_csrColIndA, h_csrValA, nnzL, h_csrRowPtrL,
|
|
h_csrColIndL, h_csrValL, nnzU, h_csrRowPtrU, h_csrColIndU, h_csrValU, h_P,
|
|
h_Q, cusolverRfH));
|
|
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
stop = second();
|
|
time_rf_assemble = stop - start;
|
|
|
|
printf("step 10: analyze to extract parallelism \n");
|
|
checkCudaErrors(cusolverRfAnalyze(cusolverRfH));
|
|
|
|
printf("step 11: import A to cusolverRf \n");
|
|
checkCudaErrors(cudaMemcpy(d_csrRowPtrA, h_csrRowPtrA,
|
|
sizeof(int) * (rowsA + 1),
|
|
cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemcpy(d_csrColIndA, h_csrColIndA, sizeof(int) * nnzA,
|
|
cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemcpy(d_csrValA, h_csrValA, sizeof(double) * nnzA,
|
|
cudaMemcpyHostToDevice));
|
|
checkCudaErrors(
|
|
cudaMemcpy(d_P, h_P, sizeof(int) * rowsA, cudaMemcpyHostToDevice));
|
|
checkCudaErrors(
|
|
cudaMemcpy(d_Q, h_Q, sizeof(int) * colsA, cudaMemcpyHostToDevice));
|
|
|
|
start = second();
|
|
start = second();
|
|
|
|
checkCudaErrors(cusolverRfResetValues(rowsA, nnzA, d_csrRowPtrA, d_csrColIndA,
|
|
d_csrValA, d_P, d_Q, cusolverRfH));
|
|
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
stop = second();
|
|
time_rf_reset = stop - start;
|
|
|
|
printf("step 12: refactorization \n");
|
|
start = second();
|
|
start = second();
|
|
|
|
checkCudaErrors(cusolverRfRefactor(cusolverRfH));
|
|
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
stop = second();
|
|
time_rf_refactor = stop - start;
|
|
|
|
printf("step 13: solve A*x = b \n");
|
|
checkCudaErrors(
|
|
cudaMemcpy(d_x, h_b, sizeof(double) * rowsA, cudaMemcpyHostToDevice));
|
|
|
|
start = second();
|
|
start = second();
|
|
|
|
checkCudaErrors(
|
|
cusolverRfSolve(cusolverRfH, d_P, d_Q, 1, d_T, rowsA, d_x, rowsA));
|
|
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
stop = second();
|
|
time_rf_solve = stop - start;
|
|
|
|
printf("step 14: evaluate residual r = b - A*x (result on GPU)\n");
|
|
checkCudaErrors(
|
|
cudaMemcpy(d_r, h_b, sizeof(double) * rowsA, cudaMemcpyHostToDevice));
|
|
|
|
checkCudaErrors(cusparseSpMV(cusparseH, CUSPARSE_OPERATION_NON_TRANSPOSE,
|
|
&minus_one, matA, vecx, &one, vecAx, CUDA_R_64F,
|
|
CUSPARSE_SPMV_ALG_DEFAULT, buffer));
|
|
|
|
checkCudaErrors(
|
|
cudaMemcpy(h_x, d_x, sizeof(double) * colsA, cudaMemcpyDeviceToHost));
|
|
checkCudaErrors(
|
|
cudaMemcpy(h_r, d_r, sizeof(double) * rowsA, cudaMemcpyDeviceToHost));
|
|
|
|
x_inf = vec_norminf(colsA, h_x);
|
|
r_inf = vec_norminf(rowsA, h_r);
|
|
printf("(GPU) |b - A*x| = %E \n", r_inf);
|
|
printf("(GPU) |A| = %E \n", A_inf);
|
|
printf("(GPU) |x| = %E \n", x_inf);
|
|
printf("(GPU) |b - A*x|/(|A|*|x|) = %E \n", r_inf / (A_inf * x_inf));
|
|
|
|
printf("===== statistics \n");
|
|
printf(" nnz(A) = %d, nnz(L+U) = %d, zero fill-in ratio = %f\n", nnzA,
|
|
nnzL + nnzU, ((double)(nnzL + nnzU)) / (double)nnzA);
|
|
printf("\n");
|
|
printf("===== timing profile \n");
|
|
printf(" reorder A : %f sec\n", time_reorder);
|
|
printf(" B = Q*A*Q^T : %f sec\n", time_perm);
|
|
printf("\n");
|
|
printf(" cusolverSp LU analysis: %f sec\n", time_sp_analysis);
|
|
printf(" cusolverSp LU factor : %f sec\n", time_sp_factor);
|
|
printf(" cusolverSp LU solve : %f sec\n", time_sp_solve);
|
|
printf(" cusolverSp LU extract : %f sec\n", time_sp_extract);
|
|
printf("\n");
|
|
printf(" cusolverRf assemble : %f sec\n", time_rf_assemble);
|
|
printf(" cusolverRf reset : %f sec\n", time_rf_reset);
|
|
printf(" cusolverRf refactor : %f sec\n", time_rf_refactor);
|
|
printf(" cusolverRf solve : %f sec\n", time_rf_solve);
|
|
|
|
if (cusolverRfH) {
|
|
checkCudaErrors(cusolverRfDestroy(cusolverRfH));
|
|
}
|
|
if (cusolverSpH) {
|
|
checkCudaErrors(cusolverSpDestroy(cusolverSpH));
|
|
}
|
|
if (cusparseH) {
|
|
checkCudaErrors(cusparseDestroy(cusparseH));
|
|
}
|
|
if (stream) {
|
|
checkCudaErrors(cudaStreamDestroy(stream));
|
|
}
|
|
if (descrA) {
|
|
checkCudaErrors(cusparseDestroyMatDescr(descrA));
|
|
}
|
|
if (info) {
|
|
checkCudaErrors(cusolverSpDestroyCsrluInfoHost(info));
|
|
}
|
|
|
|
if (matA) {
|
|
checkCudaErrors(cusparseDestroySpMat(matA));
|
|
}
|
|
if (vecx) {
|
|
checkCudaErrors(cusparseDestroyDnVec(vecx));
|
|
}
|
|
if (vecAx) {
|
|
checkCudaErrors(cusparseDestroyDnVec(vecAx));
|
|
}
|
|
|
|
if (h_csrValA) {
|
|
free(h_csrValA);
|
|
}
|
|
if (h_csrRowPtrA) {
|
|
free(h_csrRowPtrA);
|
|
}
|
|
if (h_csrColIndA) {
|
|
free(h_csrColIndA);
|
|
}
|
|
|
|
if (h_Qreorder) {
|
|
free(h_Qreorder);
|
|
}
|
|
|
|
if (h_csrRowPtrB) {
|
|
free(h_csrRowPtrB);
|
|
}
|
|
if (h_csrColIndB) {
|
|
free(h_csrColIndB);
|
|
}
|
|
if (h_csrValB) {
|
|
free(h_csrValB);
|
|
}
|
|
if (h_mapBfromA) {
|
|
free(h_mapBfromA);
|
|
}
|
|
|
|
if (h_x) {
|
|
free(h_x);
|
|
}
|
|
if (h_b) {
|
|
free(h_b);
|
|
}
|
|
if (h_r) {
|
|
free(h_r);
|
|
}
|
|
if (h_xhat) {
|
|
free(h_xhat);
|
|
}
|
|
if (h_bhat) {
|
|
free(h_bhat);
|
|
}
|
|
|
|
if (buffer_cpu) {
|
|
free(buffer_cpu);
|
|
}
|
|
|
|
if (h_Plu) {
|
|
free(h_Plu);
|
|
}
|
|
if (h_Qlu) {
|
|
free(h_Qlu);
|
|
}
|
|
if (h_csrRowPtrL) {
|
|
free(h_csrRowPtrL);
|
|
}
|
|
if (h_csrColIndL) {
|
|
free(h_csrColIndL);
|
|
}
|
|
if (h_csrValL) {
|
|
free(h_csrValL);
|
|
}
|
|
if (h_csrRowPtrU) {
|
|
free(h_csrRowPtrU);
|
|
}
|
|
if (h_csrColIndU) {
|
|
free(h_csrColIndU);
|
|
}
|
|
if (h_csrValU) {
|
|
free(h_csrValU);
|
|
}
|
|
|
|
if (h_P) {
|
|
free(h_P);
|
|
}
|
|
if (h_Q) {
|
|
free(h_Q);
|
|
}
|
|
|
|
if (d_csrValA) {
|
|
checkCudaErrors(cudaFree(d_csrValA));
|
|
}
|
|
if (d_csrRowPtrA) {
|
|
checkCudaErrors(cudaFree(d_csrRowPtrA));
|
|
}
|
|
if (d_csrColIndA) {
|
|
checkCudaErrors(cudaFree(d_csrColIndA));
|
|
}
|
|
if (d_x) {
|
|
checkCudaErrors(cudaFree(d_x));
|
|
}
|
|
if (d_b) {
|
|
checkCudaErrors(cudaFree(d_b));
|
|
}
|
|
if (d_r) {
|
|
checkCudaErrors(cudaFree(d_r));
|
|
}
|
|
if (d_P) {
|
|
checkCudaErrors(cudaFree(d_P));
|
|
}
|
|
if (d_Q) {
|
|
checkCudaErrors(cudaFree(d_Q));
|
|
}
|
|
if (d_T) {
|
|
checkCudaErrors(cudaFree(d_T));
|
|
}
|
|
|
|
return 0;
|
|
}
|