mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 22:05:49 +08:00
256 lines
8.7 KiB
Plaintext
256 lines
8.7 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
// Includes, system
|
|
#include <stdio.h>
|
|
|
|
// Includes CUDA
|
|
#include <cuda_runtime.h>
|
|
#include <cuda/barrier>
|
|
#include <cooperative_groups.h>
|
|
|
|
// Utilities and timing functions
|
|
#include <helper_functions.h> // includes cuda.h and cuda_runtime_api.h
|
|
|
|
// CUDA helper functions
|
|
#include <helper_cuda.h> // helper functions for CUDA error check
|
|
|
|
namespace cg = cooperative_groups;
|
|
|
|
#if __CUDA_ARCH__ >= 700
|
|
template <bool writeSquareRoot>
|
|
__device__ void reduceBlockData(
|
|
cuda::barrier<cuda::thread_scope_block> &barrier,
|
|
cg::thread_block_tile<32> &tile32, double &threadSum, double *result) {
|
|
extern __shared__ double tmp[];
|
|
|
|
#pragma unroll
|
|
for (int offset = tile32.size() / 2; offset > 0; offset /= 2) {
|
|
threadSum += tile32.shfl_down(threadSum, offset);
|
|
}
|
|
if (tile32.thread_rank() == 0) {
|
|
tmp[tile32.meta_group_rank()] = threadSum;
|
|
}
|
|
|
|
auto token = barrier.arrive();
|
|
|
|
barrier.wait(std::move(token));
|
|
|
|
// The warp 0 will perform last round of reduction
|
|
if (tile32.meta_group_rank() == 0) {
|
|
double beta = tile32.thread_rank() < tile32.meta_group_size()
|
|
? tmp[tile32.thread_rank()]
|
|
: 0.0;
|
|
|
|
#pragma unroll
|
|
for (int offset = tile32.size() / 2; offset > 0; offset /= 2) {
|
|
beta += tile32.shfl_down(beta, offset);
|
|
}
|
|
|
|
if (tile32.thread_rank() == 0) {
|
|
if (writeSquareRoot)
|
|
*result = sqrt(beta);
|
|
else
|
|
*result = beta;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
__global__ void normVecByDotProductAWBarrier(float *vecA, float *vecB,
|
|
double *partialResults, int size) {
|
|
#if __CUDA_ARCH__ >= 700
|
|
#pragma diag_suppress static_var_with_dynamic_init
|
|
cg::thread_block cta = cg::this_thread_block();
|
|
cg::grid_group grid = cg::this_grid();
|
|
;
|
|
cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta);
|
|
|
|
__shared__ cuda::barrier<cuda::thread_scope_block> barrier;
|
|
|
|
if (threadIdx.x == 0) {
|
|
init(&barrier, blockDim.x);
|
|
}
|
|
|
|
cg::sync(cta);
|
|
|
|
double threadSum = 0.0;
|
|
for (int i = grid.thread_rank(); i < size; i += grid.size()) {
|
|
threadSum += (double)(vecA[i] * vecB[i]);
|
|
}
|
|
|
|
// Each thread block performs reduction of partial dotProducts and writes to
|
|
// global mem.
|
|
reduceBlockData<false>(barrier, tile32, threadSum,
|
|
&partialResults[blockIdx.x]);
|
|
|
|
cg::sync(grid);
|
|
|
|
// One block performs the final summation of partial dot products
|
|
// of all the thread blocks and writes the sqrt of final dot product.
|
|
if (blockIdx.x == 0) {
|
|
threadSum = 0.0;
|
|
for (int i = cta.thread_rank(); i < gridDim.x; i += cta.size()) {
|
|
threadSum += partialResults[i];
|
|
}
|
|
reduceBlockData<true>(barrier, tile32, threadSum, &partialResults[0]);
|
|
}
|
|
|
|
cg::sync(grid);
|
|
|
|
const double finalValue = partialResults[0];
|
|
|
|
// Perform normalization of vecA & vecB.
|
|
for (int i = grid.thread_rank(); i < size; i += grid.size()) {
|
|
vecA[i] = (float)vecA[i] / finalValue;
|
|
vecB[i] = (float)vecB[i] / finalValue;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
int runNormVecByDotProductAWBarrier(int argc, char **argv, int deviceId);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Program main
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
int main(int argc, char **argv) {
|
|
printf("%s starting...\n", argv[0]);
|
|
|
|
// This will pick the best possible CUDA capable device
|
|
int dev = findCudaDevice(argc, (const char **)argv);
|
|
|
|
int major = 0;
|
|
checkCudaErrors(
|
|
cudaDeviceGetAttribute(&major, cudaDevAttrComputeCapabilityMajor, dev));
|
|
|
|
// Arrive-Wait Barrier require a GPU of Volta (SM7X) architecture or higher.
|
|
if (major < 7) {
|
|
printf("simpleAWBarrier requires SM 7.0 or higher. Exiting...\n");
|
|
exit(EXIT_WAIVED);
|
|
}
|
|
|
|
int supportsCooperativeLaunch = 0;
|
|
checkCudaErrors(cudaDeviceGetAttribute(&supportsCooperativeLaunch,
|
|
cudaDevAttrCooperativeLaunch, dev));
|
|
|
|
if (!supportsCooperativeLaunch) {
|
|
printf(
|
|
"\nSelected GPU (%d) does not support Cooperative Kernel Launch, "
|
|
"Waiving the run\n",
|
|
dev);
|
|
exit(EXIT_WAIVED);
|
|
}
|
|
|
|
int testResult = runNormVecByDotProductAWBarrier(argc, argv, dev);
|
|
|
|
printf("%s completed, returned %s\n", argv[0], testResult ? "OK" : "ERROR!");
|
|
exit(testResult ? EXIT_SUCCESS : EXIT_FAILURE);
|
|
}
|
|
|
|
int runNormVecByDotProductAWBarrier(int argc, char **argv, int deviceId) {
|
|
float *vecA, *d_vecA;
|
|
float *vecB, *d_vecB;
|
|
double *d_partialResults;
|
|
int size = 10000000;
|
|
|
|
checkCudaErrors(cudaMallocHost(&vecA, sizeof(float) * size));
|
|
checkCudaErrors(cudaMallocHost(&vecB, sizeof(float) * size));
|
|
|
|
checkCudaErrors(cudaMalloc(&d_vecA, sizeof(float) * size));
|
|
checkCudaErrors(cudaMalloc(&d_vecB, sizeof(float) * size));
|
|
|
|
float baseVal = 2.0;
|
|
for (int i = 0; i < size; i++) {
|
|
vecA[i] = vecB[i] = baseVal;
|
|
}
|
|
|
|
cudaStream_t stream;
|
|
checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
|
|
|
|
checkCudaErrors(cudaMemcpyAsync(d_vecA, vecA, sizeof(float) * size,
|
|
cudaMemcpyHostToDevice, stream));
|
|
checkCudaErrors(cudaMemcpyAsync(d_vecB, vecB, sizeof(float) * size,
|
|
cudaMemcpyHostToDevice, stream));
|
|
|
|
// Kernel configuration, where a one-dimensional
|
|
// grid and one-dimensional blocks are configured.
|
|
int minGridSize = 0, blockSize = 0;
|
|
checkCudaErrors(cudaOccupancyMaxPotentialBlockSize(
|
|
&minGridSize, &blockSize, (void *)normVecByDotProductAWBarrier, 0, size));
|
|
|
|
int smemSize = ((blockSize / 32) + 1) * sizeof(double);
|
|
|
|
int numBlocksPerSm = 0;
|
|
checkCudaErrors(cudaOccupancyMaxActiveBlocksPerMultiprocessor(
|
|
&numBlocksPerSm, normVecByDotProductAWBarrier, blockSize, smemSize));
|
|
|
|
int multiProcessorCount = 0;
|
|
checkCudaErrors(cudaDeviceGetAttribute(
|
|
&multiProcessorCount, cudaDevAttrMultiProcessorCount, deviceId));
|
|
|
|
minGridSize = multiProcessorCount * numBlocksPerSm;
|
|
checkCudaErrors(cudaMalloc(&d_partialResults, minGridSize * sizeof(double)));
|
|
|
|
printf(
|
|
"Launching normVecByDotProductAWBarrier kernel with numBlocks = %d "
|
|
"blockSize = %d\n",
|
|
minGridSize, blockSize);
|
|
|
|
dim3 dimGrid(minGridSize, 1, 1), dimBlock(blockSize, 1, 1);
|
|
|
|
void *kernelArgs[] = {(void *)&d_vecA, (void *)&d_vecB,
|
|
(void *)&d_partialResults, (void *)&size};
|
|
|
|
checkCudaErrors(
|
|
cudaLaunchCooperativeKernel((void *)normVecByDotProductAWBarrier, dimGrid,
|
|
dimBlock, kernelArgs, smemSize, stream));
|
|
|
|
checkCudaErrors(cudaMemcpyAsync(vecA, d_vecA, sizeof(float) * size,
|
|
cudaMemcpyDeviceToHost, stream));
|
|
checkCudaErrors(cudaStreamSynchronize(stream));
|
|
|
|
float expectedResult = (baseVal / sqrt(size * baseVal * baseVal));
|
|
unsigned int matches = 0;
|
|
for (int i = 0; i < size; i++) {
|
|
if ((vecA[i] - expectedResult) > 0.00001) {
|
|
printf("mismatch at i = %d\n", i);
|
|
break;
|
|
} else {
|
|
matches++;
|
|
}
|
|
}
|
|
|
|
printf("Result = %s\n", matches == size ? "PASSED" : "FAILED");
|
|
checkCudaErrors(cudaFree(d_vecA));
|
|
checkCudaErrors(cudaFree(d_vecB));
|
|
checkCudaErrors(cudaFree(d_partialResults));
|
|
|
|
checkCudaErrors(cudaFreeHost(vecA));
|
|
checkCudaErrors(cudaFreeHost(vecB));
|
|
return matches == size;
|
|
}
|