cuda-samples/Samples/tf32TensorCoreGemm/tf32TensorCoreGemm.cu
2020-12-10 01:05:32 +05:30

838 lines
36 KiB
Plaintext

/* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// CUDA sample demonstrating a tf32 (E8M10) GEMM computation using the Warp Matrix Multiply
// and Accumulate API introduced in CUDA 11.0.
// In this program, the compute_gemm kernel computes the result of a matrix multiplication
// and addition: D = alpha * A * B + beta * C. The dimensions of both C and D matrices
// are M_GLOBAL x N_GLOBAL. The A matrix is M_GLOBAL x K_GLOBAL (row-major), the B matrix
// is K_GLOBAL x N_GLOBAL (column-major).
// In that kernel, each CTA computes one 128 x 128 tile of the resulting matrix
// per iteration. When the tile is computed, the CTA stores it to the global memory
// and begins a new iteration, selecting a new 128 x 128 tile to compute.
// Each CTA consists of eight warps. For the 128 x 128 tile, each warp computes eight
// 16 x 16 subtiles, organized in a 2 x 4 two-dimensional array.
// Warps compute the 16 x 16 subtiles using nvcuda::wmma::mma_sync operations by
// moving through the K_GLOBAL dimension of the A and B matrices and accumulating
// the intermediate result in the local thread state.
// There are a number of simple optimizations used in the algorithm:
// - The CTA copies the 128 x 128 tile of the C matrix from the global memory to
// shared memory. After that is done, each warp loads the C matrix fragments from
// shared memory, thus avoiding a random global memory access.
// - On each internal iteration, the CTA copies a portion of the A and B matrices from
// global memory to shared memory. After that, all warps in the CTA reuse the A and B
// data from shared memory, thus reducing the number of data copies from global memory.
// - The portions of the A and B matrices are stored in shared memory with an additional
// padding (skew) to reduce the number of shared memory access bank conflicts.
// (See a detailed explanation near the SKEW_FLOAT macro definition.)
// - When the CTA finishes computing the tiles of the resulting matrix, each warp stores
// its subtiles to shared memory. The CTA then copies the shared memory contents to
// global memory, again avoiding redundant random global memory accesses.
// - Note that the CTA tile size is chosen to maximize the GPU register utilization,
// but carefully enough to avoid local memory use.
#include <assert.h>
#include <stdio.h>
#include <cuda.h>
#include <mma.h>
#include <cuda/pipeline>
// helper functions and utilities to work with CUDA
#include <helper_functions.h>
#include <helper_cuda.h>
// Externally configurable parameters.
#ifndef CPU_DEBUG
// Set this to 1 to verify the correctness of the GPU-computed matrix.
#define CPU_DEBUG 0
#endif
#ifndef SHARED_MEMORY_LIMIT_64K
// Set this to 0 to use more than 64 Kb of shared memory to cache data, to
// improve the performance of the computations on GPU.
// Note that you need a GPU that can have more than 64 Kb of shared memory
// per multiprocessor.
#define SHARED_MEMORY_LIMIT_64K 0
#endif
// GPU configuration.
#define WARP_SIZE 32
// MMA matrix tile dimensions.
#define M 16
#define N 16
#define K 8
// GEMM configuration.
#define M_TILES 512
#define N_TILES 512
#define K_TILES 512
#define M_GLOBAL (M * M_TILES)
#define N_GLOBAL (N * N_TILES)
#define K_GLOBAL (K * K_TILES)
#define C_LAYOUT wmma::mem_row_major
// Implementation constants.
#define WARPS_PER_BLOCK 8
#define THREADS_PER_BLOCK (WARP_SIZE * WARPS_PER_BLOCK)
#if SHARED_MEMORY_LIMIT_64K
// With only 64 Kb shared memory available, we can fit two 8-tile chunks of
// the A and B matrix data, that is (M = 16) * (K = 8) * 8 * (CHUNK_K = 8)
// * sizeof(float) = 32 Kb each.
// (i.e. two 8x8 arrays of tiles of 16x8 float-typed elements per CTA).
// But we cannot account the 8 Kb total skew overhead, without which the performance
// would be severely impacted. So we choose to reduce the chunk size in half,
// i.e. the amount of A and B matrix data we cache in shared memory.
// Accordingly, this doubles the number of outer iterations across the global K
// dimension, which only slightly impacts the performance.
#define CHUNK_K 4
#else
#define CHUNK_K 8
#endif
#define CHUNK_LINE_BYTES (CHUNK_K * K * sizeof(float))
#define WARP_COPY_BYTES (WARP_SIZE * sizeof(int4))
#define CHUNK_COPY_LINES_PER_WARP (WARP_COPY_BYTES / CHUNK_LINE_BYTES)
#define CHUNK_COPY_LINE_LANES (WARP_SIZE / CHUNK_COPY_LINES_PER_WARP)
#define BLOCK_ROW_WARPS 2
#define BLOCK_COL_WARPS 4
#define WARP_ROW_TILES 4
#define WARP_COL_TILES 2
#define BLOCK_ROW_TILES (WARP_ROW_TILES * BLOCK_ROW_WARPS)
#define BLOCK_COL_TILES (WARP_COL_TILES * BLOCK_COL_WARPS)
#define GLOBAL_MEM_STRIDE N_GLOBAL
#define SHMEM_STRIDE (N * BLOCK_ROW_TILES)
#define SHMEM_OFFSET (N * WARP_ROW_TILES)
// The macro below is used to shift rows of the A matrix and columns of the B matrix
// in shared memory to minimize possible bank conflicts.
// Before performing the nvcuda::wmma::mma_sync operation, the warp must load the matrix
// data using the nvcuda::wmma::load_matrix_sync operation. Although the memory access pattern
// is not specified for that function, each lane in the warp can read one or multiple matrix
// elements from different matrix rows or columns.
// For shared memory, such access can result in bank conflicts if different rows / columns
// of the matrix map to the same bank. By shifting each row and column by a few bytes, we
// make sure that they map to different banks, thus reducing the number of possible bank
// conflicts.
// The number of 8 four-byte "float" elements is chosen as the minimum possible shift because
// we must keep each row and column 256-bit aligned, as required by nvcuda::wmma::load_matrix_sync.
#define SKEW_FLOAT 8
#define checkKernelErrors(expr) do { \
expr; \
\
cudaError_t __err = cudaGetLastError(); \
if (__err != cudaSuccess) { \
printf("Line %d: '%s' failed: %s\n", __LINE__, # expr, cudaGetErrorString(__err)); \
abort(); \
} \
} while(0)
enum kernels
{
tf32mma_shmem_gemm_async_copy = 0, // tf32 MMA shmem using kernel with async_copy
tf32mma_shmem_gemm = 1, // tf32 MMA shmem using kernel normal copy (without async_copy).
simple_tf32mma_gemm = 2 // tf32 MMA non-shmem using simple kernel.
};
const char* kernelNames[] = {"compute_tf32gemm_async_copy", "compute_tf32gemm",
"simple_wmma_tf32gemm"};
using namespace nvcuda;
__host__ void init_host_matrices(float *a, float *b, float *c)
{
for (int i = 0; i < M_GLOBAL; i++) {
for (int j = 0; j < K_GLOBAL; j++) {
a[i*K_GLOBAL+j] = (float)(rand() % 3);
}
}
for (int i = 0; i < N_GLOBAL; i++) {
for (int j = 0; j < K_GLOBAL; j++) {
b[i*K_GLOBAL+j] = (float)(rand() % 3);
}
}
for (int t = 0; t < M_GLOBAL * N_GLOBAL; t++) {
c[t] = (float)(rand() % 3);
}
}
__global__ void compute_tf32gemm(const float *A, const float *B, const float *C, float *D, float alpha, float beta)
{
#if __CUDA_ARCH__ >= 800
extern __shared__ float shmem[][CHUNK_K * K + SKEW_FLOAT];
// Warp and lane identification.
const unsigned int warpId = threadIdx.x / WARP_SIZE;
const unsigned int laneId = threadIdx.x % WARP_SIZE;
// Offset in shared memory from which the B matrix is stored.
const size_t shmem_idx_b_off = BLOCK_COL_TILES * M;
// This pointer is used to access the C and D matrix tiles this warp computes.
float *shmem_warp_tile_ptr = (float*)&shmem[0][0] + (warpId / BLOCK_ROW_WARPS) * SHMEM_STRIDE * N * BLOCK_ROW_WARPS + (warpId % BLOCK_ROW_WARPS) * SHMEM_OFFSET;
// This pointer is used to stream the C and D matrices block-wide tile to and from shared memory.
float *shmem_warp_stream_ptr = (float*)&shmem[0][0] + warpId * SHMEM_STRIDE * N;
// Adjust the beta scaler, as it'll be multiplied by alpha at the end of
// each tile computation. Technically this is not generally correct (may result
// in a loss of precision). Zero still needs to be specially handled though.
beta /= alpha;
// Each CTA slides along the 128 x 128 tiles from the top left corner of the matrix to the
// right and down, and selects the next tile to compute. Once there's no such tile,
// all warps in this CTA exit.
for(unsigned int block_pos = blockIdx.x;; block_pos += gridDim.x) {
const unsigned int block_tile_i = ((block_pos * BLOCK_ROW_TILES) / N_TILES) * (BLOCK_COL_TILES);
const unsigned int block_tile_j = (block_pos * BLOCK_COL_TILES) % N_TILES;
// Stop when there are no more D matrix tiles to compute in this CTA.
if (block_tile_i >= M_TILES) {
break;
}
// This warp's pointer to the C matrix data to copy memory from to shared memory.
const size_t gmem_idx = (block_tile_i + warpId) * M * GLOBAL_MEM_STRIDE + block_tile_j * N;
const float *src_gmem_warp_stream_ptr = &C[gmem_idx];
// Stream multiple C tiles to shared memory.
#pragma unroll
for (int i = 0; i < N; i++) {
*((int4*)(shmem_warp_stream_ptr + SHMEM_STRIDE * i) + laneId) =
*((int4*)(src_gmem_warp_stream_ptr + GLOBAL_MEM_STRIDE * i) + laneId);
}
__syncthreads();
// These fragments will accumulate the result of A and B matrix fragment multiplications
// along the K_GLOBAL dimension.
wmma::fragment<wmma::accumulator, M, N, K, float> c[WARP_COL_TILES][WARP_ROW_TILES];
// Load the C matrix tiles into fragments from shared memory.
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
const float *tile_ptr = shmem_warp_tile_ptr + i * SHMEM_STRIDE * N + j * N;
wmma::load_matrix_sync(c[i][j], tile_ptr, SHMEM_STRIDE, C_LAYOUT);
}
}
__syncthreads();
// Scale the C matrix.
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
#pragma unroll
for (int t = 0; t < c[i][j].num_elements; t++) {
c[i][j].x[t] *= beta;
}
}
}
// Select what warp copies what matrix to shared memory.
// Warps 0-3 copy the A matrix, warps 4-7 copy the B matrix.
const float *warp_ptr = (warpId < (WARPS_PER_BLOCK/2)) ? (&A[block_tile_i * M * K_GLOBAL] + M * K_GLOBAL * (warpId % (WARPS_PER_BLOCK/2)) * 2) :
(&B[block_tile_j * N * K_GLOBAL] + N * K_GLOBAL * (warpId % (WARPS_PER_BLOCK/2)) * 2);
// Go through the global K dimension by a fixed step at a time.
#pragma unroll
for (int tile_k = 0; tile_k < K_TILES; tile_k += CHUNK_K) {
// Copy slices of the A and B matrices to shared memory.
// The first half of the warps in the CTA copy the A matrix, the rest copy the B matrix.
size_t shmem_idx = warpId < (WARPS_PER_BLOCK/2) ? (M * (warpId % (WARPS_PER_BLOCK/2)) * 2) :
(N * (warpId % (WARPS_PER_BLOCK/2)) * 2 + shmem_idx_b_off);
// First half of the warp copies the first row / column of the matrix,
// the second half of the warp copies the next.
const float *lane_ptr = (warp_ptr + tile_k * K + (laneId / CHUNK_COPY_LINE_LANES) * K_GLOBAL);
// Shift the second half of the warp to the next row / column in the shared memory.
shmem_idx += laneId / CHUNK_COPY_LINE_LANES;
#pragma unroll
for(int i = 0; i < ((WARP_SIZE/2) / CHUNK_COPY_LINES_PER_WARP) * 2; i++) {
// Copy 16 bytes at once in each lane.
*((int4*)&shmem[shmem_idx][0] + (laneId % CHUNK_COPY_LINE_LANES)) = *((int4*)lane_ptr + (laneId % CHUNK_COPY_LINE_LANES));
// Advance the global memory pointer and the shared memory index.
lane_ptr = lane_ptr + K_GLOBAL * CHUNK_COPY_LINES_PER_WARP;
shmem_idx += CHUNK_COPY_LINES_PER_WARP;
}
__syncthreads();
// Compute a grid of C matrix tiles in each warp.
#pragma unroll
for (int k_step = 0; k_step < CHUNK_K; k_step++) {
wmma::fragment<wmma::matrix_a, M, N, K, wmma::precision::tf32, wmma::row_major> a[WARP_COL_TILES];
wmma::fragment<wmma::matrix_b, M, N, K, wmma::precision::tf32, wmma::col_major> b[WARP_ROW_TILES];
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
size_t shmem_idx_a = (warpId/BLOCK_ROW_WARPS) * M * BLOCK_ROW_WARPS + (i * M);
const float *tile_ptr = &shmem[shmem_idx_a][k_step * K];
wmma::load_matrix_sync(a[i], tile_ptr, K * CHUNK_K + SKEW_FLOAT);
#pragma unroll
for (int t = 0; t < a[i].num_elements; t++) {
a[i].x[t] = wmma::__float_to_tf32(a[i].x[t]);
}
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
if (i == 0) {
// Load the B matrix fragment once, because it is going to be reused
// against the other A matrix fragments.
size_t shmem_idx_b = shmem_idx_b_off + (WARP_ROW_TILES * N) * (warpId%2) + (j * N);
const float *tile_ptr = &shmem[shmem_idx_b][k_step * K];
wmma::load_matrix_sync(b[j], tile_ptr, K * CHUNK_K + SKEW_FLOAT);
#pragma unroll
for (int t = 0; t < b[j].num_elements; t++) {
b[j].x[t] = wmma::__float_to_tf32(b[j].x[t]);
}
}
wmma::mma_sync(c[i][j], a[i], b[j], c[i][j]);
}
}
}
__syncthreads();
}
// Store the D fragments to shared memory.
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
#pragma unroll
// Uniform, point-wise transformations of ALL fragment elements by ALL threads in the
// warp are well-defined even though element indices within fragment storage are not defined.
for (int t = 0; t < c[i][j].num_elements; t++)
c[i][j].x[t] *= alpha;
float *tile_ptr = shmem_warp_tile_ptr + i * SHMEM_STRIDE * N + j * N;
wmma::store_matrix_sync(tile_ptr, c[i][j], SHMEM_STRIDE, C_LAYOUT);
}
}
__syncthreads();
// Now that shared memory contains all the D tiles, stream them to global memory.
float *dst_gmem_warp_stream_ptr = &D[gmem_idx];
#pragma unroll
for (int i = 0; i < N; i++) {
*((int4*)(dst_gmem_warp_stream_ptr + GLOBAL_MEM_STRIDE * i) + laneId) =
*((int4*)(shmem_warp_stream_ptr + SHMEM_STRIDE * i) + laneId);
}
__syncthreads();
}
#endif
}
__global__ void compute_tf32gemm_async_copy(const float *A, const float *B, const float *C, float *D, const float alpha, float beta)
{
#if __CUDA_ARCH__ >= 800
extern __shared__ float shmem[][CHUNK_K * K + SKEW_FLOAT];
// Warp and lane identification.
const unsigned int warpId = threadIdx.x / WARP_SIZE;
const unsigned int laneId = threadIdx.x % WARP_SIZE;
// This pointer is used to access the C and D matrix tiles this warp computes.
float *shmem_warp_tile_ptr = (float*)&shmem[0][0] + (warpId / BLOCK_ROW_WARPS) * SHMEM_STRIDE * N * BLOCK_ROW_WARPS + (warpId % BLOCK_ROW_WARPS) * SHMEM_OFFSET;
// This pointer is used to stream the C and D matrices block-wide tile to and from shared memory.
float *shmem_warp_stream_ptr = (float*)&shmem[0][0] + warpId * SHMEM_STRIDE * N;
// Offset in shared memory from which the B matrix is stored.
constexpr size_t shmem_idx_b_off = BLOCK_COL_TILES * M;
// Adjust the beta scaler, as it'll be multiplied by alpha at the end of
// each tile computation. Technically this is not generally correct (may result
// in a loss of precision). Zero still needs to be specially handled though.
beta /= alpha;
cuda::pipeline<cuda::thread_scope_thread> pipe = cuda::make_pipeline();
const auto shape4 = cuda::aligned_size_t<alignof(float4)>(sizeof(float4));
constexpr int loadStride = 2; // load 4 floats, so left-shift by 2.
// Each CTA slides along the 128 x 128 tiles from the top left corner of the matrix to the
// right and down, and selects the next tile to compute. Once there's no such tile,
// all warps in this CTA exit.
for(unsigned int block_pos = blockIdx.x;; block_pos += gridDim.x) {
const unsigned int block_tile_i = ((block_pos * BLOCK_ROW_TILES) / N_TILES) * (BLOCK_COL_TILES);
const unsigned int block_tile_j = (block_pos * BLOCK_COL_TILES) % N_TILES;
// Stop when there are no more D matrix tiles to compute in this CTA.
if (block_tile_i >= M_TILES) {
break;
}
// This warp's pointer to the C matrix data to copy memory from to shared memory.
const size_t gmem_idx = (block_tile_i + warpId) * M * GLOBAL_MEM_STRIDE + block_tile_j * N;
const float *src_gmem_warp_stream_ptr = &C[gmem_idx];
// Stream multiple C tiles to shared memory.
#pragma unroll
for (int i = 0; i < N; i++) {
pipe.producer_acquire();
cuda::memcpy_async(&shmem_warp_stream_ptr[(SHMEM_STRIDE * i) + (laneId << loadStride)],
&src_gmem_warp_stream_ptr[(GLOBAL_MEM_STRIDE * i) + (laneId << loadStride)],
shape4, pipe);
pipe.producer_commit();
}
// Now wait for all the above issued 8 batches to complete.
cuda::pipeline_consumer_wait_prior<0>(pipe);
__syncthreads();
// These fragments will accumulate the result of A and B matrix fragment multiplications
// along the K_GLOBAL dimension.
wmma::fragment<wmma::accumulator, M, N, K, float> c[WARP_COL_TILES][WARP_ROW_TILES];
// Load the C matrix tiles into fragments from shared memory.
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
const float *tile_ptr = shmem_warp_tile_ptr + i * SHMEM_STRIDE * N + j * N;
wmma::load_matrix_sync(c[i][j], tile_ptr, SHMEM_STRIDE, C_LAYOUT);
// Scale the C matrix.
#pragma unroll
for (int t = 0; t < c[i][j].num_elements; t++) {
c[i][j].x[t] *= beta;
}
}
}
pipe.consumer_release();
// sync here so that shared memory can then be used for loading A & B matrices.
__syncthreads();
// Select what warp copies what matrix to shared memory.
// Warps 0-3 copy the A matrix, warps 4-7 copy the B matrix.
const float *warp_ptr = (warpId < (WARPS_PER_BLOCK/2)) ? (&A[block_tile_i * M * K_GLOBAL] + M * K_GLOBAL * (warpId % (WARPS_PER_BLOCK/2)) * 2) :
(&B[block_tile_j * N * K_GLOBAL] + N * K_GLOBAL * (warpId % (WARPS_PER_BLOCK/2)) * 2);
constexpr int chunksPerLane = ((WARP_SIZE/2) / CHUNK_COPY_LINES_PER_WARP) * 2;
const int laneLoadElem = (laneId % CHUNK_COPY_LINE_LANES) << loadStride;
const int stridePerLaneCopy = (laneId / CHUNK_COPY_LINE_LANES);
// Go through the global K dimension by a fixed step at a time.
#pragma unroll
for (int tile_k = 0; tile_k < K_TILES; tile_k += CHUNK_K) {
// Copy slices of the A and B matrices to shared memory.
// The first half of the warps in the CTA copy the A matrix, the rest copy the B matrix.
// As for tf32 MMA M == N we use M for warp 4-7 + shmem_idx_b_off.
size_t shmem_idx = (M * (warpId % (WARPS_PER_BLOCK/2)) * 2) + ((warpId / (WARPS_PER_BLOCK/2)) * shmem_idx_b_off);
// First half of the warp copies the first row / column of the matrix,
// the second half of the warp copies the next.
const float *lane_ptr = (warp_ptr + tile_k * K + stridePerLaneCopy * K_GLOBAL + laneLoadElem);
// Shift the second half of the warp to the next row / column in the shared memory.
shmem_idx += stridePerLaneCopy;
#pragma unroll
for(int i = 0; i < chunksPerLane; i++) {
// Copy 16 bytes at once in each lane.
pipe.producer_acquire();
cuda::memcpy_async(&shmem[shmem_idx][laneLoadElem], lane_ptr, shape4, pipe);
pipe.producer_commit();
// Advance the global memory pointer and the shared memory index.
lane_ptr = lane_ptr + K_GLOBAL * CHUNK_COPY_LINES_PER_WARP;
shmem_idx += CHUNK_COPY_LINES_PER_WARP;
}
cuda::pipeline_consumer_wait_prior<0>(pipe);
__syncthreads();
// Compute a grid of C matrix tiles in each warp.
#pragma unroll
for (int k_step = 0; k_step < CHUNK_K; k_step++) {
wmma::fragment<wmma::matrix_a, M, N, K, wmma::precision::tf32, wmma::row_major> a[WARP_COL_TILES];
wmma::fragment<wmma::matrix_b, M, N, K, wmma::precision::tf32, wmma::col_major> b[WARP_ROW_TILES];
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
size_t shmem_idx_a = (warpId / BLOCK_ROW_WARPS) * M * BLOCK_ROW_WARPS + (i * M);
const float *tile_ptr = &shmem[shmem_idx_a][k_step * K];
wmma::load_matrix_sync(a[i], tile_ptr, K * CHUNK_K + SKEW_FLOAT);
#pragma unroll
for (int t = 0; t < a[i].num_elements; t++) {
a[i].x[t] = wmma::__float_to_tf32(a[i].x[t]);
}
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
if (i == 0) {
// Load the B matrix fragment once, because it is going to be reused
// against the other A matrix fragments.
size_t shmem_idx_b = shmem_idx_b_off + (WARP_ROW_TILES * N) * (warpId%2) + (j * N);
const float *tile_ptr = &shmem[shmem_idx_b][k_step * K];
wmma::load_matrix_sync(b[j], tile_ptr, K * CHUNK_K + SKEW_FLOAT);
#pragma unroll
for (int t = 0; t < b[j].num_elements; t++) {
b[j].x[t] = wmma::__float_to_tf32(b[j].x[t]);
}
}
wmma::mma_sync(c[i][j], a[i], b[j], c[i][j]);
}
}
}
pipe.consumer_release();
__syncthreads();
}
// Store the D fragments to shared memory.
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
#pragma unroll
// Uniform, point-wise transformations of ALL fragment elements by ALL threads in the
// warp are well-defined even though element indices within fragment storage are not defined.
for (int t = 0; t < c[i][j].num_elements; t++)
c[i][j].x[t] *= alpha;
float *tile_ptr = shmem_warp_tile_ptr + i * SHMEM_STRIDE * N + j * N;
wmma::store_matrix_sync(tile_ptr, c[i][j], SHMEM_STRIDE, C_LAYOUT);
}
}
__syncthreads();
// Now that shared memory contains all the D tiles, stream them to global memory.
float *dst_gmem_warp_stream_ptr = &D[gmem_idx];
#pragma unroll
for (int i = 0; i < N; i++) {
*((float4*)(dst_gmem_warp_stream_ptr + GLOBAL_MEM_STRIDE * i) + laneId) =
*((float4*)(shmem_warp_stream_ptr + SHMEM_STRIDE * i) + laneId);
}
__syncthreads();
}
#endif
}
// Performs an MxNxK tf32 GEMM (C=alpha*A*B + beta*C) assuming:
// 1) Matrices are packed in memory.
// 2) M, N and K are multiples of 16, 16 and 8 respectively.
// 3) A is row major, B is column major matrix.
// Note: This is a less performant version of the compute_tf32gemm kernel. It is designed for
// demonstration purposes only to show the CUDA WMMA API use without relying on
// availability of the shared memory.
__global__ void simple_wmma_tf32gemm(float *a, float *b, float *c, float *d, int m_ld, int n_ld, int k_ld, float alpha, float beta)
{
#if __CUDA_ARCH__ >= 800
// Leading dimensions. Packed with no transpositions.
int lda = k_ld;
int ldb = k_ld;
int ldc = n_ld;
// Tile using a 2D grid
int warpM = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
int warpN = (blockIdx.y * blockDim.y + threadIdx.y);
// Declare the fragments
wmma::fragment<wmma::matrix_a, M, N, K, wmma::precision::tf32, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_b, M, N, K, wmma::precision::tf32, wmma::col_major> b_frag;
wmma::fragment<wmma::accumulator, M, N, K, float> acc_frag;
wmma::fragment<wmma::accumulator, M, N, K, float> c_frag;
wmma::fill_fragment(acc_frag, 0.0f);
// Loop over k
for (int i = 0; i < k_ld; i += K) {
int aCol = i;
int aRow = warpM * M;
//int bCol = i;
//int bRow = warpN * N;
int bCol = warpN * N;
int bRow = i;
// Bounds checking
if (aRow < m_ld && aCol < k_ld && bRow < k_ld && bCol < n_ld) {
// Load the inputs
wmma::load_matrix_sync(a_frag, a + aCol + aRow * lda, lda);
wmma::load_matrix_sync(b_frag, b + bRow + bCol * ldb, ldb);
#pragma unroll
for (int t = 0; t < a_frag.num_elements; t++) {
a_frag.x[t] = wmma::__float_to_tf32(a_frag.x[t]);
}
#pragma unroll
for (int t = 0; t < b_frag.num_elements; t++) {
b_frag.x[t] = wmma::__float_to_tf32(b_frag.x[t]);
}
// Perform the matrix multiplication
wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag);
}
}
// Load in the current value of c, scale it by beta, and add this our result scaled by alpha
int cCol = warpN * N;
int cRow = warpM * M;
if (cRow < m_ld && cCol < n_ld) {
wmma::load_matrix_sync(c_frag, c + cCol + cRow * ldc, ldc, wmma::mem_row_major);
for(int i=0; i < c_frag.num_elements; i++) {
c_frag.x[i] = alpha * acc_frag.x[i] + beta * c_frag.x[i];
}
// Store the output
wmma::store_matrix_sync(d + cCol + cRow * ldc, c_frag, ldc, wmma::mem_row_major);
}
#endif
}
__host__ void matMultiplyOnHost(float *A, float *B, float *C,
float alpha, float beta,
int numARows, int numAColumns,
int numBRows, int numBColumns,
int numCRows, int numCColumns)
{
for (int i = 0; i < numCRows; i++) {
for (int j = 0; j < numCColumns; j++) {
float temp = 0.0;
for (int k = 0; k < numAColumns; k++) {
temp += A[i * numAColumns + k] * B[j * numBRows + k];
}
C[i*numCColumns + j] = temp * alpha + beta * C[i * numCColumns + j];
}
}
}
int main(int argc, char **argv)
{
printf("Initializing...\n");
int dev = findCudaDevice(argc, (const char **)argv);
cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, dev));
// Tensor cores require a GPU of Volta (SM8X) architecture or higher.
if (deviceProp.major < 8) {
printf("tf32TensorCoreGemm requires requires SM 8.0 or higher to use Tensor Cores. Exiting...\n");
exit(EXIT_WAIVED);
}
printf("M: %d (%d x %d)\n", M_GLOBAL, M, M_TILES);
printf("N: %d (%d x %d)\n", N_GLOBAL, N, N_TILES);
printf("K: %d (%d x %d)\n", K_GLOBAL, K, K_TILES);
float *A_h = NULL;
float *B_h = NULL;
float *C_h = NULL;
#if CPU_DEBUG
float *result_hD = NULL;
float *result_host = NULL;
#endif
A_h = (float*) malloc(sizeof(float) * M_GLOBAL * K_GLOBAL);
B_h = (float*) malloc(sizeof(float) * K_GLOBAL * N_GLOBAL);
C_h = (float*) malloc(sizeof(float) * M_GLOBAL * N_GLOBAL);
#if CPU_DEBUG
result_hD = (float*) malloc(sizeof(float) * M_GLOBAL * N_GLOBAL);
result_host = (float*) malloc(sizeof(float) * M_GLOBAL * N_GLOBAL);
#endif
float *A = NULL;
float *B = NULL;
float *C = NULL;
float *D = NULL;
checkCudaErrors(cudaMalloc((void**)&A, sizeof(float) * M_GLOBAL * K_GLOBAL));
checkCudaErrors(cudaMalloc((void**)&B, sizeof(float) * N_GLOBAL * K_GLOBAL));
checkCudaErrors(cudaMalloc((void**)&C, sizeof(float) * M_GLOBAL * N_GLOBAL));
checkCudaErrors(cudaMalloc((void**)&D, sizeof(float) * M_GLOBAL * N_GLOBAL));
assert(((unsigned long long)A) % 128 == 0);
assert(((unsigned long long)B) % 128 == 0);
assert(((unsigned long long)C) % 128 == 0);
assert(((unsigned long long)D) % 128 == 0);
init_host_matrices(A_h, B_h, C_h);
printf("Preparing data for GPU...\n");
checkCudaErrors(cudaMemcpy(A, A_h, sizeof(float) * M_GLOBAL * K_GLOBAL, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(B, B_h, sizeof(float) * N_GLOBAL * K_GLOBAL, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(C, C_h, sizeof(float) * M_GLOBAL * N_GLOBAL, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemset(D, 0, sizeof(float) * M_GLOBAL * N_GLOBAL));
enum {
// Compute the right amount of shared memory to request.
// We need shared memory to hold per-CTA C and D matrix tiles, and to cache per-CTA chunks
// of the A and B matrices. Therefore, the right amount to request is the maximum of those
// two numbers.
SHMEM_SZ = MAX(sizeof(float) * (BLOCK_COL_TILES * M) * (CHUNK_K * K + SKEW_FLOAT) * 2,
M * (BLOCK_ROW_WARPS * WARP_ROW_TILES) * N * (BLOCK_COL_WARPS * WARP_COL_TILES) * sizeof(float))
};
printf("Required shared memory size: %lu Kb\n", SHMEM_SZ / 1024UL);
const float alpha = 1.1f;
const float beta = 1.2f;
cudaEvent_t start, stop;
checkCudaErrors(cudaEventCreate(&start));
checkCudaErrors(cudaEventCreate(&stop));
checkCudaErrors(cudaEventRecord(start));
// kernel to run - default (tf32mma_shmem_gemm_async_copy == 0)
kernels selected_kernel = tf32mma_shmem_gemm_async_copy;
if (checkCmdLineFlag(argc, (const char **)argv, "kernel")) {
int kernel_number = getCmdLineArgumentInt(argc, (const char **)argv, "kernel");
if (kernel_number < 3) {
selected_kernel = (kernels)kernel_number;
}
else {
printf("Error: kernel number should be between 0 to 2, you have entered %d\n", kernel_number);
exit(EXIT_FAILURE);
}
}
// If enough shared memory available on the GPU use high performant kernel
if ((deviceProp.sharedMemPerMultiprocessor >= SHMEM_SZ) && (selected_kernel != simple_tf32mma_gemm)) {
printf("Computing using high performance kernel = %d - %s\n", selected_kernel, kernelNames[selected_kernel]);
switch (selected_kernel)
{
case tf32mma_shmem_gemm_async_copy :
default:
checkCudaErrors(cudaFuncSetAttribute(compute_tf32gemm_async_copy, cudaFuncAttributeMaxDynamicSharedMemorySize, SHMEM_SZ));
checkKernelErrors((compute_tf32gemm_async_copy<<<deviceProp.multiProcessorCount*2, THREADS_PER_BLOCK, SHMEM_SZ>>>(A, B, C, D, alpha, beta)));
break;
case tf32mma_shmem_gemm :
checkCudaErrors(cudaFuncSetAttribute(compute_tf32gemm, cudaFuncAttributeMaxDynamicSharedMemorySize, SHMEM_SZ));
checkKernelErrors((compute_tf32gemm<<<deviceProp.multiProcessorCount*2, THREADS_PER_BLOCK, SHMEM_SZ>>>(A, B, C, D, alpha, beta)));
break;
}
#if CPU_DEBUG
checkCudaErrors(cudaMemcpy(result_hD, D, sizeof(float)*M_GLOBAL*N_GLOBAL, cudaMemcpyDeviceToHost));
#endif
}
else {
dim3 gridDim;
dim3 blockDim;
// blockDim.x must be a multple of warpSize
// 128x4 means we have 16 warps and a block computes a 64x64 output tile
blockDim.x = 128;
blockDim.y = 4;
gridDim.x = (M_GLOBAL + (M * blockDim.x / 32 - 1)) / (M * blockDim.x / 32);
gridDim.y = (N_GLOBAL + N * blockDim.y - 1) / (N * blockDim.y);
printf("Computing... using simple_wmma_gemm kernel\n");
simple_wmma_tf32gemm<<<gridDim, blockDim>>>(A, B, C, D, M_GLOBAL, N_GLOBAL, K_GLOBAL, alpha, beta);
#if CPU_DEBUG
checkCudaErrors(cudaMemcpy(result_hD, D, sizeof(float) * M_GLOBAL * N_GLOBAL, cudaMemcpyDeviceToHost));
#endif
}
checkCudaErrors(cudaEventRecord(stop));
checkCudaErrors(cudaEventSynchronize(stop));
#if CPU_DEBUG
printf("Verifying correctness of the computations...\n");
memcpy(result_host, C_h, sizeof(float) * M_GLOBAL * N_GLOBAL);
matMultiplyOnHost(A_h, B_h, result_host,
alpha, beta,
M_GLOBAL, K_GLOBAL,
K_GLOBAL, N_GLOBAL,
M_GLOBAL, N_GLOBAL);
for (int i = 0; i < N_GLOBAL * M_GLOBAL; i++) {
if (fabs(result_hD[i] - result_host[i]) > 0.1f) {
printf("mismatch i=%d result_hD=%f result_host=%f\n", i, result_hD[i], result_host[i]);
}
}
free(result_hD);
free(result_host);
#endif
float milliseconds = 0;
checkCudaErrors(cudaEventElapsedTime(&milliseconds, start, stop));
printf("Time: %f ms\n", milliseconds);
printf("TFLOPS: %.2f\n", (((double)M_GLOBAL * N_GLOBAL * K_GLOBAL * 2)/(milliseconds/1000.)) / 1e12);
free(A_h);
free(B_h);
free(C_h);
checkCudaErrors(cudaFree((void*)A));
checkCudaErrors(cudaFree((void*)B));
checkCudaErrors(cudaFree((void*)C));
checkCudaErrors(cudaFree((void*)D));
return 0;
}