cuda-samples/Samples/5_Domain_Specific/simpleVulkan/SineWaveSimulation.cu
2022-01-13 11:35:24 +05:30

135 lines
5.0 KiB
Plaintext

/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "SineWaveSimulation.h"
#include <algorithm>
#include <helper_cuda.h>
__global__ void sinewave(float *heightMap, unsigned int width,
unsigned int height, float time) {
const float freq = 4.0f;
const size_t stride = gridDim.x * blockDim.x;
// Iterate through the entire array in a way that is
// independent of the grid configuration
for (size_t tid = blockIdx.x * blockDim.x + threadIdx.x; tid < width * height;
tid += stride) {
// Calculate the x, y coordinates
const size_t y = tid / width;
const size_t x = tid - y * width;
// Normalize x, y to [0,1]
const float u = ((2.0f * x) / width) - 1.0f;
const float v = ((2.0f * y) / height) - 1.0f;
// Calculate the new height value
const float w = 0.5f * sinf(u * freq + time) * cosf(v * freq + time);
// Store this new height value
heightMap[tid] = w;
}
}
SineWaveSimulation::SineWaveSimulation(size_t width, size_t height)
: m_heightMap(nullptr), m_width(width), m_height(height) {}
void SineWaveSimulation::initCudaLaunchConfig(int device) {
cudaDeviceProp prop = {};
checkCudaErrors(cudaSetDevice(device));
checkCudaErrors(cudaGetDeviceProperties(&prop, device));
// We don't need large block sizes, since there's not much inter-thread
// communication
m_threads = prop.warpSize;
// Use the occupancy calculator and fill the gpu as best as we can
checkCudaErrors(cudaOccupancyMaxActiveBlocksPerMultiprocessor(
&m_blocks, sinewave, prop.warpSize, 0));
m_blocks *= prop.multiProcessorCount;
// Go ahead and the clamp the blocks to the minimum needed for this
// height/width
m_blocks = std::min(m_blocks,
(int)((m_width * m_height + m_threads - 1) / m_threads));
}
int SineWaveSimulation::initCuda(uint8_t *vkDeviceUUID, size_t UUID_SIZE) {
int current_device = 0;
int device_count = 0;
int devices_prohibited = 0;
cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDeviceCount(&device_count));
if (device_count == 0) {
fprintf(stderr, "CUDA error: no devices supporting CUDA.\n");
exit(EXIT_FAILURE);
}
// Find the GPU which is selected by Vulkan
while (current_device < device_count) {
cudaGetDeviceProperties(&deviceProp, current_device);
if ((deviceProp.computeMode != cudaComputeModeProhibited)) {
// Compare the cuda device UUID with vulkan UUID
int ret = memcmp((void *)&deviceProp.uuid, vkDeviceUUID, UUID_SIZE);
if (ret == 0) {
checkCudaErrors(cudaSetDevice(current_device));
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, current_device));
printf("GPU Device %d: \"%s\" with compute capability %d.%d\n\n",
current_device, deviceProp.name, deviceProp.major,
deviceProp.minor);
return current_device;
}
} else {
devices_prohibited++;
}
current_device++;
}
if (devices_prohibited == device_count) {
fprintf(stderr,
"CUDA error:"
" No Vulkan-CUDA Interop capable GPU found.\n");
exit(EXIT_FAILURE);
}
return -1;
}
SineWaveSimulation::~SineWaveSimulation() { m_heightMap = NULL; }
void SineWaveSimulation::initSimulation(float *heights) {
m_heightMap = heights;
}
void SineWaveSimulation::stepSimulation(float time, cudaStream_t stream) {
sinewave<<<m_blocks, m_threads, 0, stream>>>(m_heightMap, m_width, m_height,
time);
getLastCudaError("Failed to launch CUDA simulation");
}