cuda-samples/Samples/cuSolverSp_LowlevelQR/cuSolverSp_LowlevelQR.cpp
2021-10-21 16:34:49 +05:30

450 lines
16 KiB
C++

/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <assert.h>
#include <ctype.h>
#include <cuda_runtime.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "cusolverSp.h"
#include "cusolverSp_LOWLEVEL_PREVIEW.h"
#include "helper_cuda.h"
#include "helper_cusolver.h"
template <typename T_ELEM>
int loadMMSparseMatrix(char *filename, char elem_type, bool csrFormat, int *m,
int *n, int *nnz, T_ELEM **aVal, int **aRowInd,
int **aColInd, int extendSymMatrix);
void UsageSP(void) {
printf("<options>\n");
printf("-h : display this help\n");
printf("-file=<filename> : filename containing a matrix in MM format\n");
printf("-device=<device_id> : <device_id> if want to run on specific GPU\n");
exit(0);
}
void parseCommandLineArguments(int argc, char *argv[], struct testOpts &opts) {
memset(&opts, 0, sizeof(opts));
if (checkCmdLineFlag(argc, (const char **)argv, "-h")) {
UsageSP();
}
if (checkCmdLineFlag(argc, (const char **)argv, "file")) {
char *fileName = 0;
getCmdLineArgumentString(argc, (const char **)argv, "file", &fileName);
if (fileName) {
opts.sparse_mat_filename = fileName;
} else {
printf("\nIncorrect filename passed to -file \n ");
UsageSP();
}
}
}
int main(int argc, char *argv[]) {
struct testOpts opts;
cusolverSpHandle_t cusolverSpH =
NULL; // reordering, permutation and 1st LU factorization
cusparseHandle_t cusparseH = NULL; // residual evaluation
cudaStream_t stream = NULL;
cusparseMatDescr_t descrA = NULL; // A is a base-0 general matrix
csrqrInfoHost_t h_info =
NULL; // opaque info structure for LU with parital pivoting
csrqrInfo_t d_info =
NULL; // opaque info structure for LU with parital pivoting
int rowsA = 0; // number of rows of A
int colsA = 0; // number of columns of A
int nnzA = 0; // number of nonzeros of A
int baseA = 0; // base index in CSR format
// CSR(A) from I/O
int *h_csrRowPtrA = NULL; // <int> n+1
int *h_csrColIndA = NULL; // <int> nnzA
double *h_csrValA = NULL; // <double> nnzA
double *h_x = NULL; // <double> n, x = A \ b
double *h_b = NULL; // <double> n, b = ones(m,1)
double *h_bcopy = NULL; // <double> n, b = ones(m,1)
double *h_r = NULL; // <double> n, r = b - A*x
size_t size_internal = 0;
size_t size_chol = 0; // size of working space for csrlu
void *buffer_cpu = NULL; // working space for Cholesky
void *buffer_gpu = NULL; // working space for Cholesky
int *d_csrRowPtrA = NULL; // <int> n+1
int *d_csrColIndA = NULL; // <int> nnzA
double *d_csrValA = NULL; // <double> nnzA
double *d_x = NULL; // <double> n, x = A \ b
double *d_b = NULL; // <double> n, a copy of h_b
double *d_r = NULL; // <double> n, r = b - A*x
// the constants used in residual evaluation, r = b - A*x
const double minus_one = -1.0;
const double one = 1.0;
const double zero = 0.0;
// the constant used in cusolverSp
// singularity is -1 if A is invertible under tol
// tol determines the condition of singularity
int singularity = 0;
const double tol = 1.e-14;
double x_inf = 0.0; // |x|
double r_inf = 0.0; // |r|
double A_inf = 0.0; // |A|
parseCommandLineArguments(argc, argv, opts);
findCudaDevice(argc, (const char **)argv);
if (opts.sparse_mat_filename == NULL) {
opts.sparse_mat_filename = sdkFindFilePath("lap2D_5pt_n32.mtx", argv[0]);
if (opts.sparse_mat_filename != NULL)
printf("Using default input file [%s]\n", opts.sparse_mat_filename);
else
printf("Could not find lap2D_5pt_n32.mtx\n");
} else {
printf("Using input file [%s]\n", opts.sparse_mat_filename);
}
printf("step 1: read matrix market format\n");
if (opts.sparse_mat_filename) {
if (loadMMSparseMatrix<double>(opts.sparse_mat_filename, 'd', true, &rowsA,
&colsA, &nnzA, &h_csrValA, &h_csrRowPtrA,
&h_csrColIndA, true)) {
return 1;
}
baseA = h_csrRowPtrA[0]; // baseA = {0,1}
} else {
fprintf(stderr, "Error: input matrix is not provided\n");
return 1;
}
if (rowsA != colsA) {
fprintf(stderr, "Error: only support square matrix\n");
return 1;
}
printf("sparse matrix A is %d x %d with %d nonzeros, base=%d\n", rowsA, colsA,
nnzA, baseA);
checkCudaErrors(cusolverSpCreate(&cusolverSpH));
checkCudaErrors(cusparseCreate(&cusparseH));
checkCudaErrors(cudaStreamCreate(&stream));
checkCudaErrors(cusolverSpSetStream(cusolverSpH, stream));
checkCudaErrors(cusparseSetStream(cusparseH, stream));
checkCudaErrors(cusparseCreateMatDescr(&descrA));
checkCudaErrors(cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL));
if (baseA) {
checkCudaErrors(cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ONE));
} else {
checkCudaErrors(cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ZERO));
}
h_x = (double *)malloc(sizeof(double) * colsA);
h_b = (double *)malloc(sizeof(double) * rowsA);
h_bcopy = (double *)malloc(sizeof(double) * rowsA);
h_r = (double *)malloc(sizeof(double) * rowsA);
assert(NULL != h_x);
assert(NULL != h_b);
assert(NULL != h_bcopy);
assert(NULL != h_r);
checkCudaErrors(
cudaMalloc((void **)&d_csrRowPtrA, sizeof(int) * (rowsA + 1)));
checkCudaErrors(cudaMalloc((void **)&d_csrColIndA, sizeof(int) * nnzA));
checkCudaErrors(cudaMalloc((void **)&d_csrValA, sizeof(double) * nnzA));
checkCudaErrors(cudaMalloc((void **)&d_x, sizeof(double) * colsA));
checkCudaErrors(cudaMalloc((void **)&d_b, sizeof(double) * rowsA));
checkCudaErrors(cudaMalloc((void **)&d_r, sizeof(double) * rowsA));
for (int row = 0; row < rowsA; row++) {
h_b[row] = 1.0;
}
memcpy(h_bcopy, h_b, sizeof(double) * rowsA);
printf("step 2: create opaque info structure\n");
checkCudaErrors(cusolverSpCreateCsrqrInfoHost(&h_info));
printf("step 3: analyze qr(A) to know structure of L\n");
checkCudaErrors(cusolverSpXcsrqrAnalysisHost(cusolverSpH, rowsA, colsA, nnzA,
descrA, h_csrRowPtrA,
h_csrColIndA, h_info));
printf("step 4: workspace for qr(A)\n");
checkCudaErrors(cusolverSpDcsrqrBufferInfoHost(
cusolverSpH, rowsA, colsA, nnzA, descrA, h_csrValA, h_csrRowPtrA,
h_csrColIndA, h_info, &size_internal, &size_chol));
if (buffer_cpu) {
free(buffer_cpu);
}
buffer_cpu = (void *)malloc(sizeof(char) * size_chol);
assert(NULL != buffer_cpu);
printf("step 5: compute A = L*L^T \n");
checkCudaErrors(cusolverSpDcsrqrSetupHost(cusolverSpH, rowsA, colsA, nnzA,
descrA, h_csrValA, h_csrRowPtrA,
h_csrColIndA, zero, h_info));
checkCudaErrors(cusolverSpDcsrqrFactorHost(cusolverSpH, rowsA, colsA, nnzA,
NULL, NULL, h_info, buffer_cpu));
printf("step 6: check if the matrix is singular \n");
checkCudaErrors(
cusolverSpDcsrqrZeroPivotHost(cusolverSpH, h_info, tol, &singularity));
if (0 <= singularity) {
fprintf(stderr, "Error: A is not invertible, singularity=%d\n",
singularity);
return 1;
}
printf("step 7: solve A*x = b \n");
checkCudaErrors(cusolverSpDcsrqrSolveHost(cusolverSpH, rowsA, colsA, h_b, h_x,
h_info, buffer_cpu));
printf("step 8: evaluate residual r = b - A*x (result on CPU)\n");
// use GPU gemv to compute r = b - A*x
checkCudaErrors(cudaMemcpy(d_csrRowPtrA, h_csrRowPtrA,
sizeof(int) * (rowsA + 1),
cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_csrColIndA, h_csrColIndA, sizeof(int) * nnzA,
cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_csrValA, h_csrValA, sizeof(double) * nnzA,
cudaMemcpyHostToDevice));
checkCudaErrors(
cudaMemcpy(d_r, h_bcopy, sizeof(double) * rowsA, cudaMemcpyHostToDevice));
checkCudaErrors(
cudaMemcpy(d_x, h_x, sizeof(double) * colsA, cudaMemcpyHostToDevice));
/* Wrap raw data into cuSPARSE generic API objects */
cusparseSpMatDescr_t matA = NULL;
if (baseA) {
checkCudaErrors(cusparseCreateCsr(&matA, rowsA, colsA, nnzA, d_csrRowPtrA,
d_csrColIndA, d_csrValA,
CUSPARSE_INDEX_32I, CUSPARSE_INDEX_32I,
CUSPARSE_INDEX_BASE_ONE, CUDA_R_64F));
} else {
checkCudaErrors(cusparseCreateCsr(&matA, rowsA, colsA, nnzA, d_csrRowPtrA,
d_csrColIndA, d_csrValA,
CUSPARSE_INDEX_32I, CUSPARSE_INDEX_32I,
CUSPARSE_INDEX_BASE_ZERO, CUDA_R_64F));
}
cusparseDnVecDescr_t vecx = NULL;
checkCudaErrors(cusparseCreateDnVec(&vecx, colsA, d_x, CUDA_R_64F));
cusparseDnVecDescr_t vecAx = NULL;
checkCudaErrors(cusparseCreateDnVec(&vecAx, rowsA, d_r, CUDA_R_64F));
/* Allocate workspace for cuSPARSE */
size_t bufferSize = 0;
checkCudaErrors(cusparseSpMV_bufferSize(
cusparseH, CUSPARSE_OPERATION_NON_TRANSPOSE, &minus_one, matA, vecx, &one,
vecAx, CUDA_R_64F, CUSPARSE_SPMV_ALG_DEFAULT, &bufferSize));
void *buffer = NULL;
checkCudaErrors(cudaMalloc(&buffer, bufferSize));
checkCudaErrors(cusparseSpMV(cusparseH, CUSPARSE_OPERATION_NON_TRANSPOSE,
&minus_one, matA, vecx, &one, vecAx, CUDA_R_64F,
CUSPARSE_SPMV_ALG_DEFAULT, buffer));
checkCudaErrors(
cudaMemcpy(h_r, d_r, sizeof(double) * rowsA, cudaMemcpyDeviceToHost));
x_inf = vec_norminf(colsA, h_x);
r_inf = vec_norminf(rowsA, h_r);
A_inf = csr_mat_norminf(rowsA, colsA, nnzA, descrA, h_csrValA, h_csrRowPtrA,
h_csrColIndA);
printf("(CPU) |b - A*x| = %E \n", r_inf);
printf("(CPU) |A| = %E \n", A_inf);
printf("(CPU) |x| = %E \n", x_inf);
printf("(CPU) |b - A*x|/(|A|*|x|) = %E \n", r_inf / (A_inf * x_inf));
printf("step 9: create opaque info structure\n");
checkCudaErrors(cusolverSpCreateCsrqrInfo(&d_info));
checkCudaErrors(cudaMemcpy(d_csrRowPtrA, h_csrRowPtrA,
sizeof(int) * (rowsA + 1),
cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_csrColIndA, h_csrColIndA, sizeof(int) * nnzA,
cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_csrValA, h_csrValA, sizeof(double) * nnzA,
cudaMemcpyHostToDevice));
checkCudaErrors(
cudaMemcpy(d_b, h_bcopy, sizeof(double) * rowsA, cudaMemcpyHostToDevice));
printf("step 10: analyze qr(A) to know structure of L\n");
checkCudaErrors(cusolverSpXcsrqrAnalysis(cusolverSpH, rowsA, colsA, nnzA,
descrA, d_csrRowPtrA, d_csrColIndA,
d_info));
printf("step 11: workspace for qr(A)\n");
checkCudaErrors(cusolverSpDcsrqrBufferInfo(
cusolverSpH, rowsA, colsA, nnzA, descrA, d_csrValA, d_csrRowPtrA,
d_csrColIndA, d_info, &size_internal, &size_chol));
printf("GPU buffer size = %lld bytes\n", (signed long long)size_chol);
if (buffer_gpu) {
checkCudaErrors(cudaFree(buffer_gpu));
}
checkCudaErrors(cudaMalloc(&buffer_gpu, sizeof(char) * size_chol));
printf("step 12: compute A = L*L^T \n");
checkCudaErrors(cusolverSpDcsrqrSetup(cusolverSpH, rowsA, colsA, nnzA, descrA,
d_csrValA, d_csrRowPtrA, d_csrColIndA,
zero, d_info));
checkCudaErrors(cusolverSpDcsrqrFactor(cusolverSpH, rowsA, colsA, nnzA, NULL,
NULL, d_info, buffer_gpu));
printf("step 13: check if the matrix is singular \n");
checkCudaErrors(
cusolverSpDcsrqrZeroPivot(cusolverSpH, d_info, tol, &singularity));
if (0 <= singularity) {
fprintf(stderr, "Error: A is not invertible, singularity=%d\n",
singularity);
return 1;
}
printf("step 14: solve A*x = b \n");
checkCudaErrors(cusolverSpDcsrqrSolve(cusolverSpH, rowsA, colsA, d_b, d_x,
d_info, buffer_gpu));
checkCudaErrors(
cudaMemcpy(d_r, h_bcopy, sizeof(double) * rowsA, cudaMemcpyHostToDevice));
checkCudaErrors(cusparseSpMV(cusparseH, CUSPARSE_OPERATION_NON_TRANSPOSE,
&minus_one, matA, vecx, &one, vecAx, CUDA_R_64F,
CUSPARSE_SPMV_ALG_DEFAULT, buffer));
checkCudaErrors(
cudaMemcpy(h_r, d_r, sizeof(double) * rowsA, cudaMemcpyDeviceToHost));
r_inf = vec_norminf(rowsA, h_r);
printf("(GPU) |b - A*x| = %E \n", r_inf);
printf("(GPU) |b - A*x|/(|A|*|x|) = %E \n", r_inf / (A_inf * x_inf));
if (cusolverSpH) {
checkCudaErrors(cusolverSpDestroy(cusolverSpH));
}
if (cusparseH) {
checkCudaErrors(cusparseDestroy(cusparseH));
}
if (stream) {
checkCudaErrors(cudaStreamDestroy(stream));
}
if (descrA) {
checkCudaErrors(cusparseDestroyMatDescr(descrA));
}
if (h_info) {
checkCudaErrors(cusolverSpDestroyCsrqrInfoHost(h_info));
}
if (d_info) {
checkCudaErrors(cusolverSpDestroyCsrqrInfo(d_info));
}
if (matA) {
checkCudaErrors(cusparseDestroySpMat(matA));
}
if (vecx) {
checkCudaErrors(cusparseDestroyDnVec(vecx));
}
if (vecAx) {
checkCudaErrors(cusparseDestroyDnVec(vecAx));
}
if (h_csrValA) {
free(h_csrValA);
}
if (h_csrRowPtrA) {
free(h_csrRowPtrA);
}
if (h_csrColIndA) {
free(h_csrColIndA);
}
if (h_x) {
free(h_x);
}
if (h_b) {
free(h_b);
}
if (h_bcopy) {
free(h_bcopy);
}
if (h_r) {
free(h_r);
}
if (buffer_cpu) {
free(buffer_cpu);
}
if (buffer_gpu) {
checkCudaErrors(cudaFree(buffer_gpu));
}
if (d_csrValA) {
checkCudaErrors(cudaFree(d_csrValA));
}
if (d_csrRowPtrA) {
checkCudaErrors(cudaFree(d_csrRowPtrA));
}
if (d_csrColIndA) {
checkCudaErrors(cudaFree(d_csrColIndA));
}
if (d_x) {
checkCudaErrors(cudaFree(d_x));
}
if (d_b) {
checkCudaErrors(cudaFree(d_b));
}
if (d_r) {
checkCudaErrors(cudaFree(d_r));
}
return 0;
}