mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-28 21:59:13 +08:00
222 lines
6.2 KiB
C++
222 lines
6.2 KiB
C++
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* Vector addition: C = A + B.
|
|
*
|
|
* This sample is a very basic sample that implements element by element
|
|
* vector addition. It is the same as the sample illustrating Chapter 3
|
|
* of the programming guide with some additions like error checking.
|
|
*
|
|
*/
|
|
|
|
// Includes
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <iostream>
|
|
#include <cstring>
|
|
#include <cuda.h>
|
|
|
|
// includes, project
|
|
#include <helper_cuda_drvapi.h>
|
|
#include <helper_functions.h>
|
|
|
|
// includes, CUDA
|
|
#include <builtin_types.h>
|
|
|
|
using namespace std;
|
|
|
|
// Variables
|
|
CUdevice cuDevice;
|
|
CUcontext cuContext;
|
|
CUmodule cuModule;
|
|
CUfunction vecAdd_kernel;
|
|
float *h_A;
|
|
float *h_B;
|
|
float *h_C;
|
|
CUdeviceptr d_A;
|
|
CUdeviceptr d_B;
|
|
CUdeviceptr d_C;
|
|
|
|
// Functions
|
|
int CleanupNoFailure();
|
|
void RandomInit(float *, int);
|
|
bool findModulePath(const char *, string &, char **, string &);
|
|
|
|
// define input fatbin file
|
|
#ifndef FATBIN_FILE
|
|
#define FATBIN_FILE "vectorAdd_kernel64.fatbin"
|
|
#endif
|
|
|
|
// Host code
|
|
int main(int argc, char **argv) {
|
|
printf("Vector Addition (Driver API)\n");
|
|
int N = 50000, devID = 0;
|
|
size_t size = N * sizeof(float);
|
|
|
|
// Initialize
|
|
checkCudaErrors(cuInit(0));
|
|
|
|
cuDevice = findCudaDeviceDRV(argc, (const char **)argv);
|
|
// Create context
|
|
checkCudaErrors(cuCtxCreate(&cuContext, 0, cuDevice));
|
|
|
|
// first search for the module path before we load the results
|
|
string module_path;
|
|
|
|
std::ostringstream fatbin;
|
|
|
|
if (!findFatbinPath(FATBIN_FILE, module_path, argv, fatbin)) {
|
|
exit(EXIT_FAILURE);
|
|
} else {
|
|
printf("> initCUDA loading module: <%s>\n", module_path.c_str());
|
|
}
|
|
|
|
if (!fatbin.str().size()) {
|
|
printf("fatbin file empty. exiting..\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
// Create module from binary file (FATBIN)
|
|
checkCudaErrors(cuModuleLoadData(&cuModule, fatbin.str().c_str()));
|
|
|
|
// Get function handle from module
|
|
checkCudaErrors(
|
|
cuModuleGetFunction(&vecAdd_kernel, cuModule, "VecAdd_kernel"));
|
|
|
|
// Allocate input vectors h_A and h_B in host memory
|
|
h_A = (float *)malloc(size);
|
|
h_B = (float *)malloc(size);
|
|
h_C = (float *)malloc(size);
|
|
|
|
// Initialize input vectors
|
|
RandomInit(h_A, N);
|
|
RandomInit(h_B, N);
|
|
|
|
// Allocate vectors in device memory
|
|
checkCudaErrors(cuMemAlloc(&d_A, size));
|
|
|
|
checkCudaErrors(cuMemAlloc(&d_B, size));
|
|
|
|
checkCudaErrors(cuMemAlloc(&d_C, size));
|
|
|
|
// Copy vectors from host memory to device memory
|
|
checkCudaErrors(cuMemcpyHtoD(d_A, h_A, size));
|
|
|
|
checkCudaErrors(cuMemcpyHtoD(d_B, h_B, size));
|
|
|
|
if (1) {
|
|
// This is the new CUDA 4.0 API for Kernel Parameter Passing and Kernel
|
|
// Launch (simpler method)
|
|
|
|
// Grid/Block configuration
|
|
int threadsPerBlock = 256;
|
|
int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
|
|
|
|
void *args[] = {&d_A, &d_B, &d_C, &N};
|
|
|
|
// Launch the CUDA kernel
|
|
checkCudaErrors(cuLaunchKernel(vecAdd_kernel, blocksPerGrid, 1, 1,
|
|
threadsPerBlock, 1, 1, 0, NULL, args, NULL));
|
|
} else {
|
|
// This is the new CUDA 4.0 API for Kernel Parameter Passing and Kernel
|
|
// Launch (advanced method)
|
|
int offset = 0;
|
|
void *argBuffer[16];
|
|
*((CUdeviceptr *)&argBuffer[offset]) = d_A;
|
|
offset += sizeof(d_A);
|
|
*((CUdeviceptr *)&argBuffer[offset]) = d_B;
|
|
offset += sizeof(d_B);
|
|
*((CUdeviceptr *)&argBuffer[offset]) = d_C;
|
|
offset += sizeof(d_C);
|
|
*((int *)&argBuffer[offset]) = N;
|
|
offset += sizeof(N);
|
|
|
|
// Grid/Block configuration
|
|
int threadsPerBlock = 256;
|
|
int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
|
|
|
|
// Launch the CUDA kernel
|
|
checkCudaErrors(cuLaunchKernel(vecAdd_kernel, blocksPerGrid, 1, 1,
|
|
threadsPerBlock, 1, 1, 0, NULL, NULL,
|
|
argBuffer));
|
|
}
|
|
|
|
#ifdef _DEBUG
|
|
checkCudaErrors(cuCtxSynchronize());
|
|
#endif
|
|
|
|
// Copy result from device memory to host memory
|
|
// h_C contains the result in host memory
|
|
checkCudaErrors(cuMemcpyDtoH(h_C, d_C, size));
|
|
|
|
// Verify result
|
|
int i;
|
|
|
|
for (i = 0; i < N; ++i) {
|
|
float sum = h_A[i] + h_B[i];
|
|
|
|
if (fabs(h_C[i] - sum) > 1e-7f) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
CleanupNoFailure();
|
|
printf("%s\n", (i == N) ? "Result = PASS" : "Result = FAIL");
|
|
|
|
exit((i == N) ? EXIT_SUCCESS : EXIT_FAILURE);
|
|
}
|
|
|
|
int CleanupNoFailure() {
|
|
// Free device memory
|
|
checkCudaErrors(cuMemFree(d_A));
|
|
checkCudaErrors(cuMemFree(d_B));
|
|
checkCudaErrors(cuMemFree(d_C));
|
|
|
|
// Free host memory
|
|
if (h_A) {
|
|
free(h_A);
|
|
}
|
|
|
|
if (h_B) {
|
|
free(h_B);
|
|
}
|
|
|
|
if (h_C) {
|
|
free(h_C);
|
|
}
|
|
|
|
checkCudaErrors(cuCtxDestroy(cuContext));
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|
|
// Allocates an array with random float entries.
|
|
void RandomInit(float *data, int n) {
|
|
for (int i = 0; i < n; ++i) {
|
|
data[i] = rand() / (float)RAND_MAX;
|
|
}
|
|
}
|