mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 22:25:49 +08:00
415 lines
13 KiB
C++
415 lines
13 KiB
C++
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <helper_cuda.h>
|
|
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
#include <memory.h>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
|
|
#include <cuda_gl_interop.h>
|
|
|
|
template <typename T>
|
|
void integrateNbodySystem(DeviceData<T> *deviceData,
|
|
cudaGraphicsResource **pgres,
|
|
unsigned int currentRead, float deltaTime,
|
|
float damping, unsigned int numBodies,
|
|
unsigned int numDevices, int blockSize, bool bUsePBO);
|
|
|
|
cudaError_t setSofteningSquared(float softeningSq);
|
|
cudaError_t setSofteningSquared(double softeningSq);
|
|
|
|
template <typename T>
|
|
BodySystemCUDA<T>::BodySystemCUDA(unsigned int numBodies,
|
|
unsigned int numDevices,
|
|
unsigned int blockSize, bool usePBO,
|
|
bool useSysMem, bool useP2P, int deviceId)
|
|
: m_numBodies(numBodies),
|
|
m_numDevices(numDevices),
|
|
m_bInitialized(false),
|
|
m_bUsePBO(usePBO),
|
|
m_bUseSysMem(useSysMem),
|
|
m_bUseP2P(useP2P),
|
|
m_currentRead(0),
|
|
m_currentWrite(1),
|
|
m_blockSize(blockSize),
|
|
m_devID(deviceId) {
|
|
m_hPos[0] = m_hPos[1] = 0;
|
|
m_hVel = 0;
|
|
|
|
m_deviceData = 0;
|
|
|
|
_initialize(numBodies);
|
|
setSoftening(0.00125f);
|
|
setDamping(0.995f);
|
|
}
|
|
|
|
template <typename T>
|
|
BodySystemCUDA<T>::~BodySystemCUDA() {
|
|
_finalize();
|
|
m_numBodies = 0;
|
|
}
|
|
|
|
template <typename T>
|
|
void BodySystemCUDA<T>::_initialize(int numBodies) {
|
|
assert(!m_bInitialized);
|
|
|
|
m_numBodies = numBodies;
|
|
|
|
unsigned int memSize = sizeof(T) * 4 * numBodies;
|
|
|
|
m_deviceData = new DeviceData<T>[m_numDevices];
|
|
|
|
// divide up the workload amongst Devices
|
|
float *weights = new float[m_numDevices];
|
|
int *numSms = new int[m_numDevices];
|
|
float total = 0;
|
|
|
|
for (unsigned int i = 0; i < m_numDevices; i++) {
|
|
cudaDeviceProp props;
|
|
checkCudaErrors(cudaGetDeviceProperties(&props, i));
|
|
|
|
// Choose the weight based on the Compute Capability
|
|
// We estimate that a CC2.0 SM is about 4.0x faster than a CC 1.x SM for
|
|
// this application (since a 15-SM GF100 is about 2X faster than a 30-SM
|
|
// GT200).
|
|
numSms[i] = props.multiProcessorCount;
|
|
weights[i] = numSms[i] * (props.major >= 2 ? 4.f : 1.f);
|
|
total += weights[i];
|
|
}
|
|
|
|
unsigned int offset = 0;
|
|
unsigned int remaining = m_numBodies;
|
|
|
|
for (unsigned int i = 0; i < m_numDevices; i++) {
|
|
unsigned int count = (int)((weights[i] / total) * m_numBodies);
|
|
// Rounding up to numSms[i]*256 leads to better GPU utilization _per_ GPU
|
|
// but when using multiple devices, it will lead to the last GPUs not having
|
|
// any work at all
|
|
// which means worse overall performance
|
|
// unsigned int round = numSms[i] * 256;
|
|
unsigned int round = 256;
|
|
|
|
count = round * ((count + round - 1) / round);
|
|
if (count > remaining) {
|
|
count = remaining;
|
|
}
|
|
|
|
remaining -= count;
|
|
m_deviceData[i].offset = offset;
|
|
m_deviceData[i].numBodies = count;
|
|
offset += count;
|
|
|
|
if ((i == m_numDevices - 1) && (offset < m_numBodies - 1)) {
|
|
m_deviceData[i].numBodies += m_numBodies - offset;
|
|
}
|
|
}
|
|
|
|
delete[] weights;
|
|
delete[] numSms;
|
|
|
|
if (m_bUseSysMem) {
|
|
checkCudaErrors(cudaHostAlloc((void **)&m_hPos[0], memSize,
|
|
cudaHostAllocMapped | cudaHostAllocPortable));
|
|
checkCudaErrors(cudaHostAlloc((void **)&m_hPos[1], memSize,
|
|
cudaHostAllocMapped | cudaHostAllocPortable));
|
|
checkCudaErrors(cudaHostAlloc((void **)&m_hVel, memSize,
|
|
cudaHostAllocMapped | cudaHostAllocPortable));
|
|
|
|
memset(m_hPos[0], 0, memSize);
|
|
memset(m_hPos[1], 0, memSize);
|
|
memset(m_hVel, 0, memSize);
|
|
|
|
for (unsigned int i = 0; i < m_numDevices; i++) {
|
|
if (m_numDevices > 1) {
|
|
checkCudaErrors(cudaSetDevice(i));
|
|
}
|
|
|
|
checkCudaErrors(cudaEventCreate(&m_deviceData[i].event));
|
|
checkCudaErrors(cudaHostGetDevicePointer(
|
|
(void **)&m_deviceData[i].dPos[0], (void *)m_hPos[0], 0));
|
|
checkCudaErrors(cudaHostGetDevicePointer(
|
|
(void **)&m_deviceData[i].dPos[1], (void *)m_hPos[1], 0));
|
|
checkCudaErrors(cudaHostGetDevicePointer((void **)&m_deviceData[i].dVel,
|
|
(void *)m_hVel, 0));
|
|
}
|
|
} else {
|
|
m_hPos[0] = new T[m_numBodies * 4];
|
|
m_hVel = new T[m_numBodies * 4];
|
|
|
|
memset(m_hPos[0], 0, memSize);
|
|
memset(m_hVel, 0, memSize);
|
|
|
|
checkCudaErrors(cudaSetDevice(m_devID));
|
|
checkCudaErrors(cudaEventCreate(&m_deviceData[0].event));
|
|
|
|
if (m_bUsePBO) {
|
|
// create the position pixel buffer objects for rendering
|
|
// we will actually compute directly from this memory in CUDA too
|
|
glGenBuffers(2, (GLuint *)m_pbo);
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
glBindBuffer(GL_ARRAY_BUFFER, m_pbo[i]);
|
|
glBufferData(GL_ARRAY_BUFFER, memSize, m_hPos[0], GL_DYNAMIC_DRAW);
|
|
|
|
int size = 0;
|
|
glGetBufferParameteriv(GL_ARRAY_BUFFER, GL_BUFFER_SIZE, (GLint *)&size);
|
|
|
|
if ((unsigned)size != memSize) {
|
|
fprintf(stderr, "WARNING: Pixel Buffer Object allocation failed!n");
|
|
}
|
|
|
|
glBindBuffer(GL_ARRAY_BUFFER, 0);
|
|
checkCudaErrors(cudaGraphicsGLRegisterBuffer(&m_pGRes[i], m_pbo[i],
|
|
cudaGraphicsMapFlagsNone));
|
|
}
|
|
} else {
|
|
checkCudaErrors(cudaMalloc((void **)&m_deviceData[0].dPos[0], memSize));
|
|
checkCudaErrors(cudaMalloc((void **)&m_deviceData[0].dPos[1], memSize));
|
|
}
|
|
|
|
checkCudaErrors(cudaMalloc((void **)&m_deviceData[0].dVel, memSize));
|
|
|
|
// At this point we already know P2P is supported
|
|
if (m_bUseP2P) {
|
|
for (unsigned int i = 1; i < m_numDevices; i++) {
|
|
int access = 0;
|
|
cudaError_t error;
|
|
|
|
// Enable access for gpu_i to memory owned by gpu0
|
|
checkCudaErrors(cudaSetDevice(i));
|
|
if ((error = cudaDeviceEnablePeerAccess(0, 0)) !=
|
|
cudaErrorPeerAccessAlreadyEnabled) {
|
|
checkCudaErrors(error);
|
|
} else {
|
|
// We might have already enabled P2P, so catch this and reset error
|
|
// code...
|
|
cudaGetLastError();
|
|
}
|
|
|
|
checkCudaErrors(cudaEventCreate(&m_deviceData[i].event));
|
|
|
|
// Point all GPUs to the memory allocated on gpu0
|
|
m_deviceData[i].dPos[0] = m_deviceData[0].dPos[0];
|
|
m_deviceData[i].dPos[1] = m_deviceData[0].dPos[1];
|
|
m_deviceData[i].dVel = m_deviceData[0].dVel;
|
|
}
|
|
}
|
|
}
|
|
|
|
m_bInitialized = true;
|
|
}
|
|
|
|
template <typename T>
|
|
void BodySystemCUDA<T>::_finalize() {
|
|
assert(m_bInitialized);
|
|
|
|
if (m_bUseSysMem) {
|
|
checkCudaErrors(cudaFreeHost(m_hPos[0]));
|
|
checkCudaErrors(cudaFreeHost(m_hPos[1]));
|
|
checkCudaErrors(cudaFreeHost(m_hVel));
|
|
|
|
for (unsigned int i = 0; i < m_numDevices; i++) {
|
|
cudaEventDestroy(m_deviceData[i].event);
|
|
}
|
|
} else {
|
|
delete[] m_hPos[0];
|
|
delete[] m_hPos[1];
|
|
delete[] m_hVel;
|
|
|
|
checkCudaErrors(cudaFree((void **)m_deviceData[0].dVel));
|
|
|
|
if (m_bUsePBO) {
|
|
checkCudaErrors(cudaGraphicsUnregisterResource(m_pGRes[0]));
|
|
checkCudaErrors(cudaGraphicsUnregisterResource(m_pGRes[1]));
|
|
glDeleteBuffers(2, (const GLuint *)m_pbo);
|
|
} else {
|
|
checkCudaErrors(cudaFree((void **)m_deviceData[0].dPos[0]));
|
|
checkCudaErrors(cudaFree((void **)m_deviceData[0].dPos[1]));
|
|
|
|
checkCudaErrors(cudaEventDestroy(m_deviceData[0].event));
|
|
|
|
if (m_bUseP2P) {
|
|
for (unsigned int i = 1; i < m_numDevices; i++) {
|
|
checkCudaErrors(cudaEventDestroy(m_deviceData[i].event));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
delete[] m_deviceData;
|
|
|
|
m_bInitialized = false;
|
|
}
|
|
|
|
template <typename T>
|
|
void BodySystemCUDA<T>::loadTipsyFile(const std::string &filename) {
|
|
if (m_bInitialized) _finalize();
|
|
|
|
std::vector<typename vec4<T>::Type> positions;
|
|
std::vector<typename vec4<T>::Type> velocities;
|
|
std::vector<int> ids;
|
|
|
|
int nBodies = 0;
|
|
int nFirst = 0, nSecond = 0, nThird = 0;
|
|
|
|
read_tipsy_file(positions, velocities, ids, filename, nBodies, nFirst,
|
|
nSecond, nThird);
|
|
|
|
_initialize(nBodies);
|
|
|
|
setArray(BODYSYSTEM_POSITION, (T *)&positions[0]);
|
|
setArray(BODYSYSTEM_VELOCITY, (T *)&velocities[0]);
|
|
}
|
|
|
|
template <typename T>
|
|
void BodySystemCUDA<T>::setSoftening(T softening) {
|
|
T softeningSq = softening * softening;
|
|
|
|
for (unsigned int i = 0; i < m_numDevices; i++) {
|
|
if (m_numDevices > 1) {
|
|
checkCudaErrors(cudaSetDevice(i));
|
|
}
|
|
|
|
checkCudaErrors(setSofteningSquared(softeningSq));
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void BodySystemCUDA<T>::setDamping(T damping) {
|
|
m_damping = damping;
|
|
}
|
|
|
|
template <typename T>
|
|
void BodySystemCUDA<T>::update(T deltaTime) {
|
|
assert(m_bInitialized);
|
|
|
|
integrateNbodySystem<T>(m_deviceData, m_pGRes, m_currentRead,
|
|
(float)deltaTime, (float)m_damping, m_numBodies,
|
|
m_numDevices, m_blockSize, m_bUsePBO);
|
|
|
|
std::swap(m_currentRead, m_currentWrite);
|
|
}
|
|
|
|
template <typename T>
|
|
T *BodySystemCUDA<T>::getArray(BodyArray array) {
|
|
assert(m_bInitialized);
|
|
|
|
T *hdata = 0;
|
|
T *ddata = 0;
|
|
|
|
cudaGraphicsResource *pgres = NULL;
|
|
|
|
int currentReadHost = m_bUseSysMem ? m_currentRead : 0;
|
|
|
|
switch (array) {
|
|
default:
|
|
case BODYSYSTEM_POSITION:
|
|
hdata = m_hPos[currentReadHost];
|
|
ddata = m_deviceData[0].dPos[m_currentRead];
|
|
|
|
if (m_bUsePBO) {
|
|
pgres = m_pGRes[m_currentRead];
|
|
}
|
|
|
|
break;
|
|
|
|
case BODYSYSTEM_VELOCITY:
|
|
hdata = m_hVel;
|
|
ddata = m_deviceData[0].dVel;
|
|
break;
|
|
}
|
|
|
|
if (!m_bUseSysMem) {
|
|
if (pgres) {
|
|
checkCudaErrors(
|
|
cudaGraphicsResourceSetMapFlags(pgres, cudaGraphicsMapFlagsReadOnly));
|
|
checkCudaErrors(cudaGraphicsMapResources(1, &pgres, 0));
|
|
size_t bytes;
|
|
checkCudaErrors(
|
|
cudaGraphicsResourceGetMappedPointer((void **)&ddata, &bytes, pgres));
|
|
}
|
|
|
|
checkCudaErrors(cudaMemcpy(hdata, ddata, m_numBodies * 4 * sizeof(T),
|
|
cudaMemcpyDeviceToHost));
|
|
|
|
if (pgres) {
|
|
checkCudaErrors(cudaGraphicsUnmapResources(1, &pgres, 0));
|
|
}
|
|
}
|
|
|
|
return hdata;
|
|
}
|
|
|
|
template <typename T>
|
|
void BodySystemCUDA<T>::setArray(BodyArray array, const T *data) {
|
|
assert(m_bInitialized);
|
|
|
|
m_currentRead = 0;
|
|
m_currentWrite = 1;
|
|
|
|
switch (array) {
|
|
default:
|
|
case BODYSYSTEM_POSITION: {
|
|
if (m_bUsePBO) {
|
|
glBindBuffer(GL_ARRAY_BUFFER, m_pbo[m_currentRead]);
|
|
glBufferSubData(GL_ARRAY_BUFFER, 0, 4 * sizeof(T) * m_numBodies, data);
|
|
|
|
int size = 0;
|
|
glGetBufferParameteriv(GL_ARRAY_BUFFER, GL_BUFFER_SIZE, (GLint *)&size);
|
|
|
|
if ((unsigned)size != 4 * (sizeof(T) * m_numBodies)) {
|
|
fprintf(stderr, "WARNING: Pixel Buffer Object download failed!n");
|
|
}
|
|
|
|
glBindBuffer(GL_ARRAY_BUFFER, 0);
|
|
} else {
|
|
if (m_bUseSysMem) {
|
|
memcpy(m_hPos[m_currentRead], data, m_numBodies * 4 * sizeof(T));
|
|
} else
|
|
checkCudaErrors(cudaMemcpy(m_deviceData[0].dPos[m_currentRead], data,
|
|
m_numBodies * 4 * sizeof(T),
|
|
cudaMemcpyHostToDevice));
|
|
}
|
|
} break;
|
|
|
|
case BODYSYSTEM_VELOCITY:
|
|
if (m_bUseSysMem) {
|
|
memcpy(m_hVel, data, m_numBodies * 4 * sizeof(T));
|
|
} else
|
|
checkCudaErrors(cudaMemcpy(m_deviceData[0].dVel, data,
|
|
m_numBodies * 4 * sizeof(T),
|
|
cudaMemcpyHostToDevice));
|
|
|
|
break;
|
|
}
|
|
}
|