mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 16:25:47 +08:00
310 lines
9.1 KiB
Plaintext
310 lines
9.1 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
// This sample demonstrates dynamic global memory allocation through device C++
|
|
// new and delete operators and virtual function declarations available with
|
|
// CUDA 4.0.
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <cooperative_groups.h>
|
|
|
|
namespace cg = cooperative_groups;
|
|
#include <helper_cuda.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <vector>
|
|
#include <algorithm>
|
|
|
|
const char *sSDKsample = "newdelete";
|
|
|
|
#include "container.hpp"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Kernels to allocate and instantiate Container objects on the device heap
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
__global__ void vectorCreate(Container<int> **g_container, int max_size) {
|
|
// The Vector object and the data storage are allocated in device heap memory.
|
|
// This makes it persistent for the lifetime of the CUDA context.
|
|
// The grid has only one thread as only a single object instance is needed.
|
|
|
|
*g_container = new Vector<int>(max_size);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Kernels to fill and consume shared Container objects.
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
__global__ void containerFill(Container<int> **g_container) {
|
|
// All threads of the grid cooperatively populate the shared Container object
|
|
// with data.
|
|
if (threadIdx.x == 0) {
|
|
(*g_container)->push(blockIdx.x);
|
|
}
|
|
}
|
|
|
|
__global__ void containerConsume(Container<int> **g_container, int *d_result) {
|
|
// All threads of the grid cooperatively consume the data from the shared
|
|
// Container object.
|
|
int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
int v;
|
|
|
|
if ((*g_container)->pop(v)) {
|
|
d_result[idx] = v;
|
|
} else {
|
|
d_result[idx] = -1;
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Kernel to delete shared Container objects.
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
__global__ void containerDelete(Container<int> **g_container) {
|
|
delete *g_container;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Kernels to using of placement new to put shared Vector objects and data in
|
|
// shared memory
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
__global__ void placementNew(int *d_result) {
|
|
// Handle to thread block group
|
|
cg::thread_block cta = cg::this_thread_block();
|
|
__shared__ unsigned char __align__(8) s_buffer[sizeof(Vector<int>)];
|
|
__shared__ int __align__(8) s_data[1024];
|
|
__shared__ Vector<int> *s_vector;
|
|
|
|
// The first thread of the block initializes the shared Vector object.
|
|
// The placement new operator enables the Vector object and the data array top
|
|
// be placed in shared memory.
|
|
if (threadIdx.x == 0) {
|
|
s_vector = new (s_buffer) Vector<int>(1024, s_data);
|
|
}
|
|
|
|
cg::sync(cta);
|
|
|
|
if ((threadIdx.x & 1) == 0) {
|
|
s_vector->push(threadIdx.x >> 1);
|
|
}
|
|
|
|
// Need to sync as the vector implementation does not support concurrent
|
|
// push/pop operations.
|
|
cg::sync(cta);
|
|
|
|
int v;
|
|
|
|
if (s_vector->pop(v)) {
|
|
d_result[threadIdx.x] = v;
|
|
} else {
|
|
d_result[threadIdx.x] = -1;
|
|
}
|
|
|
|
// Note: deleting objects placed in shared memory is not necessary (lifetime
|
|
// of shared memory is that of the block)
|
|
}
|
|
|
|
struct ComplexType_t {
|
|
int a;
|
|
int b;
|
|
float c;
|
|
float d;
|
|
};
|
|
|
|
__global__ void complexVector(int *d_result) {
|
|
// Handle to thread block group
|
|
cg::thread_block cta = cg::this_thread_block();
|
|
__shared__ unsigned char __align__(8) s_buffer[sizeof(Vector<ComplexType_t>)];
|
|
__shared__ ComplexType_t __align__(8) s_data[1024];
|
|
__shared__ Vector<ComplexType_t> *s_vector;
|
|
|
|
// The first thread of the block initializes the shared Vector object.
|
|
// The placement new operator enables the Vector object and the data array top
|
|
// be placed in shared memory.
|
|
if (threadIdx.x == 0) {
|
|
s_vector = new (s_buffer) Vector<ComplexType_t>(1024, s_data);
|
|
}
|
|
|
|
cg::sync(cta);
|
|
|
|
if ((threadIdx.x & 1) == 0) {
|
|
ComplexType_t data;
|
|
data.a = threadIdx.x >> 1;
|
|
data.b = blockIdx.x;
|
|
data.c = threadIdx.x / (float)(blockDim.x);
|
|
data.d = blockIdx.x / (float)(gridDim.x);
|
|
|
|
s_vector->push(data);
|
|
}
|
|
|
|
cg::sync(cta);
|
|
|
|
ComplexType_t v;
|
|
|
|
if (s_vector->pop(v)) {
|
|
d_result[threadIdx.x] = v.a;
|
|
} else {
|
|
d_result[threadIdx.x] = -1;
|
|
}
|
|
|
|
// Note: deleting objects placed in shared memory is not necessary (lifetime
|
|
// of shared memory is that of the block)
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Host code
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
bool checkResult(int *d_result, int N) {
|
|
std::vector<int> h_result;
|
|
h_result.resize(N);
|
|
|
|
checkCudaErrors(cudaMemcpy(&h_result[0], d_result, N * sizeof(int),
|
|
cudaMemcpyDeviceToHost));
|
|
std::sort(h_result.begin(), h_result.end());
|
|
|
|
bool success = true;
|
|
bool test = false;
|
|
|
|
int value = 0;
|
|
|
|
for (int i = 0; i < N; ++i) {
|
|
if (h_result[i] != -1) {
|
|
test = true;
|
|
}
|
|
|
|
if (test && (value++) != h_result[i]) {
|
|
success = false;
|
|
}
|
|
}
|
|
|
|
return success;
|
|
}
|
|
|
|
bool testContainer(Container<int> **d_container, int blocks, int threads) {
|
|
int *d_result;
|
|
cudaMalloc(&d_result, blocks * threads * sizeof(int));
|
|
|
|
containerFill<<<blocks, threads>>>(d_container);
|
|
containerConsume<<<blocks, threads>>>(d_container, d_result);
|
|
containerDelete<<<1, 1>>>(d_container);
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
|
|
bool success = checkResult(d_result, blocks * threads);
|
|
|
|
cudaFree(d_result);
|
|
|
|
return success;
|
|
}
|
|
|
|
bool testPlacementNew(int threads) {
|
|
int *d_result;
|
|
cudaMalloc(&d_result, threads * sizeof(int));
|
|
|
|
placementNew<<<1, threads>>>(d_result);
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
|
|
bool success = checkResult(d_result, threads);
|
|
|
|
cudaFree(d_result);
|
|
|
|
return success;
|
|
}
|
|
|
|
bool testComplexType(int threads) {
|
|
int *d_result;
|
|
cudaMalloc(&d_result, threads * sizeof(int));
|
|
|
|
complexVector<<<1, threads>>>(d_result);
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
|
|
bool success = checkResult(d_result, threads);
|
|
|
|
cudaFree(d_result);
|
|
|
|
return success;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// MAIN
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int main(int argc, char **argv) {
|
|
printf("%s Starting...\n\n", sSDKsample);
|
|
|
|
// use command-line specified CUDA device, otherwise use device with highest
|
|
// Gflops/s
|
|
findCudaDevice(argc, (const char **)argv);
|
|
|
|
// set the heap size for device size new/delete to 128 MB
|
|
checkCudaErrors(cudaDeviceSetLimit(cudaLimitMallocHeapSize, 128 * (1 << 20)));
|
|
|
|
Container<int> **d_container;
|
|
checkCudaErrors(cudaMalloc(&d_container, sizeof(Container<int> **)));
|
|
|
|
bool bTest = false;
|
|
int test_passed = 0;
|
|
|
|
printf(" > Container = Vector test ");
|
|
vectorCreate<<<1, 1>>>(d_container, 128 * 128);
|
|
bTest = testContainer(d_container, 128, 128);
|
|
printf(bTest ? "OK\n\n" : "NOT OK\n\n");
|
|
test_passed += (bTest ? 1 : 0);
|
|
|
|
checkCudaErrors(cudaFree(d_container));
|
|
|
|
printf(" > Container = Vector, using placement new on SMEM buffer test ");
|
|
bTest = testPlacementNew(1024);
|
|
printf(bTest ? "OK\n\n" : "NOT OK\n\n");
|
|
test_passed += (bTest ? 1 : 0);
|
|
|
|
printf(" > Container = Vector, with user defined datatype test ");
|
|
bTest = testComplexType(1024);
|
|
printf(bTest ? "OK\n\n" : "NOT OK\n\n");
|
|
test_passed += (bTest ? 1 : 0);
|
|
|
|
printf("Test Summary: %d/3 succesfully run\n", test_passed);
|
|
|
|
exit(test_passed == 3 ? EXIT_SUCCESS : EXIT_FAILURE);
|
|
}
|