mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-19 16:35:57 +08:00
280 lines
10 KiB
Plaintext
280 lines
10 KiB
Plaintext
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <cooperative_groups.h>
|
|
|
|
namespace cg = cooperative_groups;
|
|
#include <helper_cuda.h>
|
|
#include <assert.h>
|
|
#include "mergeSort_common.h"
|
|
|
|
inline __device__ void Comparator(uint &keyA, uint &valA, uint &keyB,
|
|
uint &valB, uint arrowDir) {
|
|
uint t;
|
|
|
|
if ((keyA > keyB) == arrowDir) {
|
|
t = keyA;
|
|
keyA = keyB;
|
|
keyB = t;
|
|
t = valA;
|
|
valA = valB;
|
|
valB = t;
|
|
}
|
|
}
|
|
|
|
__global__ void bitonicSortSharedKernel(uint *d_DstKey, uint *d_DstVal,
|
|
uint *d_SrcKey, uint *d_SrcVal,
|
|
uint arrayLength, uint sortDir) {
|
|
// Handle to thread block group
|
|
cg::thread_block cta = cg::this_thread_block();
|
|
// Shared memory storage for one or more short vectors
|
|
__shared__ uint s_key[SHARED_SIZE_LIMIT];
|
|
__shared__ uint s_val[SHARED_SIZE_LIMIT];
|
|
|
|
// Offset to the beginning of subbatch and load data
|
|
d_SrcKey += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x;
|
|
d_SrcVal += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x;
|
|
d_DstKey += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x;
|
|
d_DstVal += blockIdx.x * SHARED_SIZE_LIMIT + threadIdx.x;
|
|
s_key[threadIdx.x + 0] = d_SrcKey[0];
|
|
s_val[threadIdx.x + 0] = d_SrcVal[0];
|
|
s_key[threadIdx.x + (SHARED_SIZE_LIMIT / 2)] =
|
|
d_SrcKey[(SHARED_SIZE_LIMIT / 2)];
|
|
s_val[threadIdx.x + (SHARED_SIZE_LIMIT / 2)] =
|
|
d_SrcVal[(SHARED_SIZE_LIMIT / 2)];
|
|
|
|
for (uint size = 2; size < arrayLength; size <<= 1) {
|
|
// Bitonic merge
|
|
uint dir = (threadIdx.x & (size / 2)) != 0;
|
|
|
|
for (uint stride = size / 2; stride > 0; stride >>= 1) {
|
|
cg::sync(cta);
|
|
uint pos = 2 * threadIdx.x - (threadIdx.x & (stride - 1));
|
|
Comparator(s_key[pos + 0], s_val[pos + 0], s_key[pos + stride],
|
|
s_val[pos + stride], dir);
|
|
}
|
|
}
|
|
|
|
// ddd == sortDir for the last bitonic merge step
|
|
{
|
|
for (uint stride = arrayLength / 2; stride > 0; stride >>= 1) {
|
|
cg::sync(cta);
|
|
uint pos = 2 * threadIdx.x - (threadIdx.x & (stride - 1));
|
|
Comparator(s_key[pos + 0], s_val[pos + 0], s_key[pos + stride],
|
|
s_val[pos + stride], sortDir);
|
|
}
|
|
}
|
|
|
|
cg::sync(cta);
|
|
d_DstKey[0] = s_key[threadIdx.x + 0];
|
|
d_DstVal[0] = s_val[threadIdx.x + 0];
|
|
d_DstKey[(SHARED_SIZE_LIMIT / 2)] =
|
|
s_key[threadIdx.x + (SHARED_SIZE_LIMIT / 2)];
|
|
d_DstVal[(SHARED_SIZE_LIMIT / 2)] =
|
|
s_val[threadIdx.x + (SHARED_SIZE_LIMIT / 2)];
|
|
}
|
|
|
|
// Helper function (also used by odd-even merge sort)
|
|
extern "C" uint factorRadix2(uint *log2L, uint L) {
|
|
if (!L) {
|
|
*log2L = 0;
|
|
return 0;
|
|
} else {
|
|
for (*log2L = 0; (L & 1) == 0; L >>= 1, *log2L++)
|
|
;
|
|
|
|
return L;
|
|
}
|
|
}
|
|
|
|
extern "C" void bitonicSortShared(uint *d_DstKey, uint *d_DstVal,
|
|
uint *d_SrcKey, uint *d_SrcVal,
|
|
uint batchSize, uint arrayLength,
|
|
uint sortDir) {
|
|
// Nothing to sort
|
|
if (arrayLength < 2) {
|
|
return;
|
|
}
|
|
|
|
// Only power-of-two array lengths are supported by this implementation
|
|
uint log2L;
|
|
uint factorizationRemainder = factorRadix2(&log2L, arrayLength);
|
|
assert(factorizationRemainder == 1);
|
|
|
|
uint blockCount = batchSize * arrayLength / SHARED_SIZE_LIMIT;
|
|
uint threadCount = SHARED_SIZE_LIMIT / 2;
|
|
|
|
assert(arrayLength <= SHARED_SIZE_LIMIT);
|
|
assert((batchSize * arrayLength) % SHARED_SIZE_LIMIT == 0);
|
|
|
|
bitonicSortSharedKernel<<<blockCount, threadCount>>>(
|
|
d_DstKey, d_DstVal, d_SrcKey, d_SrcVal, arrayLength, sortDir);
|
|
getLastCudaError("bitonicSortSharedKernel<<<>>> failed!\n");
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Merge step 3: merge elementary intervals
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
static inline __host__ __device__ uint iDivUp(uint a, uint b) {
|
|
return ((a % b) == 0) ? (a / b) : (a / b + 1);
|
|
}
|
|
|
|
static inline __host__ __device__ uint getSampleCount(uint dividend) {
|
|
return iDivUp(dividend, SAMPLE_STRIDE);
|
|
}
|
|
|
|
template <uint sortDir>
|
|
static inline __device__ void ComparatorExtended(uint &keyA, uint &valA,
|
|
uint &flagA, uint &keyB,
|
|
uint &valB, uint &flagB,
|
|
uint arrowDir) {
|
|
uint t;
|
|
|
|
if ((!(flagA || flagB) && ((keyA > keyB) == arrowDir)) ||
|
|
((arrowDir == sortDir) && (flagA == 1)) ||
|
|
((arrowDir != sortDir) && (flagB == 1))) {
|
|
t = keyA;
|
|
keyA = keyB;
|
|
keyB = t;
|
|
t = valA;
|
|
valA = valB;
|
|
valB = t;
|
|
t = flagA;
|
|
flagA = flagB;
|
|
flagB = t;
|
|
}
|
|
}
|
|
|
|
template <uint sortDir>
|
|
__global__ void bitonicMergeElementaryIntervalsKernel(
|
|
uint *d_DstKey, uint *d_DstVal, uint *d_SrcKey, uint *d_SrcVal,
|
|
uint *d_LimitsA, uint *d_LimitsB, uint stride, uint N) {
|
|
// Handle to thread block group
|
|
cg::thread_block cta = cg::this_thread_block();
|
|
__shared__ uint s_key[2 * SAMPLE_STRIDE];
|
|
__shared__ uint s_val[2 * SAMPLE_STRIDE];
|
|
__shared__ uint s_inf[2 * SAMPLE_STRIDE];
|
|
|
|
const uint intervalI = blockIdx.x & ((2 * stride) / SAMPLE_STRIDE - 1);
|
|
const uint segmentBase = (blockIdx.x - intervalI) * SAMPLE_STRIDE;
|
|
d_SrcKey += segmentBase;
|
|
d_SrcVal += segmentBase;
|
|
d_DstKey += segmentBase;
|
|
d_DstVal += segmentBase;
|
|
|
|
// Set up threadblock-wide parameters
|
|
__shared__ uint startSrcA, lenSrcA, startSrcB, lenSrcB, startDst;
|
|
|
|
if (threadIdx.x == 0) {
|
|
uint segmentElementsA = stride;
|
|
uint segmentElementsB = umin(stride, N - segmentBase - stride);
|
|
uint segmentSamplesA = stride / SAMPLE_STRIDE;
|
|
uint segmentSamplesB = getSampleCount(segmentElementsB);
|
|
uint segmentSamples = segmentSamplesA + segmentSamplesB;
|
|
|
|
startSrcA = d_LimitsA[blockIdx.x];
|
|
startSrcB = d_LimitsB[blockIdx.x];
|
|
startDst = startSrcA + startSrcB;
|
|
|
|
uint endSrcA = (intervalI + 1 < segmentSamples) ? d_LimitsA[blockIdx.x + 1]
|
|
: segmentElementsA;
|
|
uint endSrcB = (intervalI + 1 < segmentSamples) ? d_LimitsB[blockIdx.x + 1]
|
|
: segmentElementsB;
|
|
lenSrcA = endSrcA - startSrcA;
|
|
lenSrcB = endSrcB - startSrcB;
|
|
}
|
|
|
|
s_inf[threadIdx.x + 0] = 1;
|
|
s_inf[threadIdx.x + SAMPLE_STRIDE] = 1;
|
|
|
|
// Load input data
|
|
cg::sync(cta);
|
|
|
|
if (threadIdx.x < lenSrcA) {
|
|
s_key[threadIdx.x] = d_SrcKey[0 + startSrcA + threadIdx.x];
|
|
s_val[threadIdx.x] = d_SrcVal[0 + startSrcA + threadIdx.x];
|
|
s_inf[threadIdx.x] = 0;
|
|
}
|
|
|
|
// Prepare for bitonic merge by inversing the ordering
|
|
if (threadIdx.x < lenSrcB) {
|
|
s_key[2 * SAMPLE_STRIDE - 1 - threadIdx.x] =
|
|
d_SrcKey[stride + startSrcB + threadIdx.x];
|
|
s_val[2 * SAMPLE_STRIDE - 1 - threadIdx.x] =
|
|
d_SrcVal[stride + startSrcB + threadIdx.x];
|
|
s_inf[2 * SAMPLE_STRIDE - 1 - threadIdx.x] = 0;
|
|
}
|
|
|
|
//"Extended" bitonic merge
|
|
for (uint stride = SAMPLE_STRIDE; stride > 0; stride >>= 1) {
|
|
cg::sync(cta);
|
|
uint pos = 2 * threadIdx.x - (threadIdx.x & (stride - 1));
|
|
ComparatorExtended<sortDir>(s_key[pos + 0], s_val[pos + 0], s_inf[pos + 0],
|
|
s_key[pos + stride], s_val[pos + stride],
|
|
s_inf[pos + stride], sortDir);
|
|
}
|
|
|
|
// Store sorted data
|
|
cg::sync(cta);
|
|
d_DstKey += startDst;
|
|
d_DstVal += startDst;
|
|
|
|
if (threadIdx.x < lenSrcA) {
|
|
d_DstKey[threadIdx.x] = s_key[threadIdx.x];
|
|
d_DstVal[threadIdx.x] = s_val[threadIdx.x];
|
|
}
|
|
|
|
if (threadIdx.x < lenSrcB) {
|
|
d_DstKey[lenSrcA + threadIdx.x] = s_key[lenSrcA + threadIdx.x];
|
|
d_DstVal[lenSrcA + threadIdx.x] = s_val[lenSrcA + threadIdx.x];
|
|
}
|
|
}
|
|
|
|
extern "C" void bitonicMergeElementaryIntervals(uint *d_DstKey, uint *d_DstVal,
|
|
uint *d_SrcKey, uint *d_SrcVal,
|
|
uint *d_LimitsA,
|
|
uint *d_LimitsB, uint stride,
|
|
uint N, uint sortDir) {
|
|
uint lastSegmentElements = N % (2 * stride);
|
|
|
|
uint mergePairs = (lastSegmentElements > stride)
|
|
? getSampleCount(N)
|
|
: (N - lastSegmentElements) / SAMPLE_STRIDE;
|
|
|
|
if (sortDir) {
|
|
bitonicMergeElementaryIntervalsKernel<1U><<<mergePairs, SAMPLE_STRIDE>>>(
|
|
d_DstKey, d_DstVal, d_SrcKey, d_SrcVal, d_LimitsA, d_LimitsB, stride,
|
|
N);
|
|
getLastCudaError("mergeElementaryIntervalsKernel<1> failed\n");
|
|
} else {
|
|
bitonicMergeElementaryIntervalsKernel<0U><<<mergePairs, SAMPLE_STRIDE>>>(
|
|
d_DstKey, d_DstVal, d_SrcKey, d_SrcVal, d_LimitsA, d_LimitsB, stride,
|
|
N);
|
|
getLastCudaError("mergeElementaryIntervalsKernel<0> failed\n");
|
|
}
|
|
}
|